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This is the documentation for RTC-Tools, the Deltares toolbox for control and optimization of environmental systems.

Visit the RTC-Tools website for a general product description and information on available services.

This first chapter covers getting the software running on your computer. The subsequent two chapters describe the
RTC-Tools Python API. The fourth and final chapter discusses several illustrative examples, including the use of goal
programming for multi-objective optimization, as well as the use of forecast ensembles.
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CHAPTER 1

Contents

1.1 Getting Started

1.1.1 Installation

For most users, the easiest way to install RTC-Tools using the pip package manager.

Using the Pip Package Manager

Although not required, it is recommended to install RTC-Tools in a virtual environment. See the official Python tutorial
for more information on how to set up and activate a virtual environment.

RTC-Tools, including its dependencies, can be installed using the pip package manager:

# Install RTC-Tools and Channel Flow using pip package manager
pip install rtc-tools rtc-tools-channel-flow

From Source

The latest RTC-Tools and Channel Flow source can be downloaded using git:

# Get RTC-Tools source
git clone https://gitlab.com/deltares/rtc-tools.git

# Get RTC-Tools's Modelica library
git clone https://gitlab.com/deltares/rtc-tools-channel-flow.git

Then you can install this latest version as follows:

pip install ./rtc-tools
pip install ./rtc-tools-channel-flow

3
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Or if you would like to have an editable installation (e.g. as developer):

pip install -e ./rtc-tools
pip install -e ./rtc-tools-channel-flow

1.1.2 Downloading and running examples

To check whether the installation was succesful, the basic example can be used. If RTC-Tools was not installed from
source, the examples need to be downloaded first:

# Download the examples to the current folder (.)
rtc-tools-download-examples .

# Navigate to the basic example
cd rtc-tools-examples/basic/src

# Run the example
python example.py

If the installation was succesful, you should see that the solver succeeds:

Elsewhere in this documentation we refer to the folder containing the examples as <examples directory>.
Depending on the method of installation this can then either be:

• \path\to\rtc-tools-examples, when having downloaded the examples

• \path\to\source\of\rtc-tools\examples, when having installed RTC-Tools from source

1.1.3 Copying Modelica libraries

Because the Modelica libraries are distributed as pip packages, their location inside Python’s site-packages can
be somewhat inconvient. To copy the Modelica libraries to a more convenient location, you can use the
rtc-tools-copy-libraries command:
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# Copy all Modelica libraries of RTC-Tools to the current folder (.)
rtc-tools-copy-libraries .

You should now have a folder Deltares, containing amongst others a package.mo file, a ChannelFlow folder
and folders of any other RTC- Tools extensions you installed.

Elsewhere in this documentation we refer to the library folder containing the Deltares folder as <library
directory>.

1.1.4 Getting OMEdit

RTC-Tools uses the Modelica language to describe the mathematics of the system we wish to optimize. There are
several editors for Modelica models, but the OpenModelica Connection Editor, or OMEdit, is a free and open-source
graphical connection editor that can be used to construct RTC-Tools models. To download it for windows, click here:
https://www.openmodelica.org/download/download-windows

Once installed, you can start OMEdit by clicking:

Start -> All Programs -> OpenModelica -> OpenModelica Connection Editor

With OMEdit installed, you can start using it by following along with the basic example, Filling a Reservoir.

1.1.5 Running RTC-Tools

RTC-Tools is run from a command line shell. On Windows, both PowerShell and cmd can be used. On
Linux/MacOS you could use the terminal application with a shell of your liking.

Once you have started the shell and loaded the correct virtual environment (if applicable), navigate to the src directory
of the case you wish to optimize, e.g.:

cd \path\to\rtc-tools-examples\basic\src

Then, to run the case with RTC-Tools, run the src python script, e.g.:

python example.py

You will see the progress of RTC-Tools in your shell. All your standard shell commands can be used in the RTC-Tools
shell. For example, you can use:

python example.py > log.txt

to pipe RTC-Tools output to a log file.

1.2 Optimization

Contents:

1.2.1 Basics

class rtctools.optimization.timeseries.Timeseries(times: numpy.ndarray, values:
Union[numpy.ndarray, list,
casadi.casadi.DM])

Bases: object

1.2. Optimization 5
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Time series object, bundling time stamps with values.

__init__(times: numpy.ndarray, values: Union[numpy.ndarray, list, casadi.casadi.DM])
Create a new time series object.

Parameters

• times – Iterable of time stamps.

• values – Iterable of values.

times
Array of time stamps.

values
Array of values.

class rtctools.optimization.optimization_problem.OptimizationProblem(**kwargs)
Bases: object

Base class for all optimization problems.

bounds()→ rtctools._internal.alias_tools.AliasDict
Returns variable bounds as a dictionary mapping variable names to a pair of bounds. A bound may be a
constant, or a time series.

Returns A dictionary of variable names and (upper, lower) bound pairs. The bounds may
be numbers or Timeseries objects.

Example:

def bounds(self):
return {'x': (1.0, 2.0), 'y': (2.0, 3.0)}

constant_inputs(ensemble_member: int)→ rtctools._internal.alias_tools.AliasDict
Returns a dictionary of constant inputs.

Parameters ensemble_member – The ensemble member index.

Returns A dictionary of constant input names and time series.

constraints(ensemble_member: int)→ List[Tuple[casadi.casadi.MX, Union[float, numpy.ndarray],
Union[float, numpy.ndarray]]]

Returns a list of constraints for the given ensemble member.

Call OptimizationProblem.state_at() to return a symbol representing a model variable at a
given time.

Parameters ensemble_member – The ensemble member index.

Returns A list of triples (f, m, M), with an MX object representing the constraint function f,
lower bound m, and upper bound M. The bounds must be numbers.

Example:

def constraints(self, ensemble_member):
t = 1.0
constraint1 = (

2 * self.state_at('x', t, ensemble_member),
2.0, 4.0)

constraint2 = (
self.state_at('x', t, ensemble_member) + self.state_at('y', t,

→˓ensemble_member),

(continues on next page)
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(continued from previous page)

2.0, 3.0)
return [constraint1, constraint2]

control(variable: str)→ casadi.casadi.MX
Returns an MX symbol for the given control input, not bound to any time.

Parameters variable – Variable name.

Returns MX symbol for given control input.

Raises KeyError

control_at(variable: str, t: float, ensemble_member: int = 0, scaled: bool = False) →
casadi.casadi.MX

Returns an MX symbol representing the given control input at the given time.

Parameters

• variable – Variable name.

• t – Time.

• ensemble_member – The ensemble member index.

• scaled – True to return the scaled variable.

Returns MX symbol representing the control input at the given time.

Raises KeyError

delayed_feedback()→ List[Tuple[str, str, float]]
Returns the delayed feedback mappings. These are given as a list of triples (𝑥, 𝑦, 𝜏), to indicate that
𝑦 = 𝑥(𝑡− 𝜏).

Returns A list of triples.

Example:

def delayed_feedback(self):
fb1 = ['x', 'y', 0.1]
fb2 = ['x', 'z', 0.2]
return [fb1, fb2]

der(variable: str)→ casadi.casadi.MX
Returns an MX symbol for the time derivative given state, not bound to any time.

Parameters variable – Variable name.

Returns MX symbol for given state.

Raises KeyError

der_at(variable: str, t: float, ensemble_member: int = 0)→ casadi.casadi.MX
Returns an expression for the time derivative of the specified variable at time t.

Parameters

• variable – Variable name.

• t – Time.

• ensemble_member – The ensemble member index.

Returns MX object representing the derivative.

Raises KeyError

1.2. Optimization 7
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ensemble_member_probability(ensemble_member: int)→ float
The probability of an ensemble member occurring.

Parameters ensemble_member – The ensemble member index.

Returns The probability of an ensemble member occurring.

Raises IndexError

ensemble_size
The number of ensemble members.

get_timeseries(variable: str, ensemble_member: int = 0) → rtc-
tools.optimization.timeseries.Timeseries

Looks up a timeseries from the internal data store.

Parameters

• variable – Variable name.

• ensemble_member – The ensemble member index.

Returns The requested time series.

Return type Timeseries

Raises KeyError

history(ensemble_member: int)→ rtctools._internal.alias_tools.AliasDict
Returns the state history. Uses the initial_state() method by default.

Parameters ensemble_member – The ensemble member index.

Returns A dictionary of variable names and historical time series (up to and including t0).

initial_state(ensemble_member: int)→ rtctools._internal.alias_tools.AliasDict
The initial state.

The default implementation uses t0 data returned by the history method.

Parameters ensemble_member – The ensemble member index.

Returns A dictionary of variable names and initial state (t0) values.

initial_time
The initial time in seconds.

integral(variable: str, t0: float = None, tf: float = None, ensemble_member: int = 0) →
casadi.casadi.MX

Returns an expression for the integral over the interval [t0, tf].

Parameters

• variable – Variable name.

• t0 – Left bound of interval. If equal to None, the initial time is used.

• tf – Right bound of interval. If equal to None, the final time is used.

• ensemble_member – The ensemble member index.

Returns MX object representing the integral.

Raises KeyError

interpolate(t: Union[float, numpy.ndarray], ts: numpy.ndarray, fs: numpy.ndarray, f_left: float =
nan, f_right: float = nan, mode: int = 0)→ Union[float, numpy.ndarray]

Linear interpolation over time.
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Parameters

• t (float or vector of floats) – Time at which to evaluate the interpolant.

• ts (numpy array) – Time stamps.

• fs – Function values at time stamps ts.

• f_left – Function value left of leftmost time stamp.

• f_right – Function value right of rightmost time stamp.

• mode – Interpolation mode.

Returns The interpolated value.

lookup_tables(ensemble_member: int)→ rtctools._internal.alias_tools.AliasDict
Returns a dictionary of lookup tables.

Parameters ensemble_member – The ensemble member index.

Returns A dictionary of variable names and lookup tables.

objective(ensemble_member: int)→ casadi.casadi.MX
The objective function for the given ensemble member.

Call OptimizationProblem.state_at() to return a symbol representing a model variable at a
given time.

Parameters ensemble_member – The ensemble member index.

Returns An MX object representing the objective function.

Example:

def objective(self, ensemble_member):
# Return value of state 'x' at final time:
times = self.times()
return self.state_at('x', times[-1], ensemble_member)

optimize(preprocessing: bool = True, postprocessing: bool = True, log_solver_failure_as_error: bool
= True)→ bool

Perform one initialize-transcribe-solve-finalize cycle.

Parameters

• preprocessing – True to enable a call to pre preceding the optimization.

• postprocessing – True to enable a call to post following the optimization.

Returns True on success.

parameters(ensemble_member: int)→ rtctools._internal.alias_tools.AliasDict
Returns a dictionary of parameters.

Parameters ensemble_member – The ensemble member index.

Returns A dictionary of parameter names and values.

path_constraints(ensemble_member: int) → List[Tuple[casadi.casadi.MX, Union[float,
numpy.ndarray], Union[float, numpy.ndarray]]]

Returns a list of path constraints.

Path constraints apply to all times and ensemble members simultaneously. Call
OptimizationProblem.state() to return a time- and ensemble-member-independent sym-
bol representing a model variable.

1.2. Optimization 9
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Parameters ensemble_member – The ensemble member index. This index may only be used
to supply member-dependent bounds.

Returns A list of triples (f, m, M), with an MX object representing the path constraint func-
tion f, lower bound m, and upper bound M. The bounds may be numbers or Timeseries
objects.

Example:

def path_constraints(self, ensemble_member):
# 2 * x must lie between 2 and 4 for every time instance.
path_constraint1 = (2 * self.state('x'), 2.0, 4.0)
# x + y must lie between 2 and 3 for every time instance
path_constraint2 = (self.state('x') + self.state('y'), 2.0, 3.0)
return [path_constraint1, path_constraint2]

path_objective(ensemble_member: int)→ casadi.casadi.MX
Returns a path objective the given ensemble member.

Path objectives apply to all times and ensemble members simultaneously. Call
OptimizationProblem.state() to return a time- and ensemble-member-independent sym-
bol representing a model variable.

Parameters ensemble_member – The ensemble member index. This index is currently un-
used, and here for future use only.

Returns A MX object representing the path objective.

Example:

def path_objective(self, ensemble_member):
# Minimize x(t) for all t
return self.state('x')

post()→ None
Postprocessing logic is performed here.

pre()→ None
Preprocessing logic is performed here.

seed(ensemble_member: int)→ rtctools._internal.alias_tools.AliasDict
Seeding data. The optimization algorithm is seeded with the data returned by this method.

Parameters ensemble_member – The ensemble member index.

Returns A dictionary of variable names and seed time series.

set_timeseries(variable: str, timeseries: rtctools.optimization.timeseries.Timeseries, ensem-
ble_member: int = 0, output: bool = True, check_consistency: bool = True) →
None

Sets a timeseries in the internal data store.

Parameters

• variable – Variable name.

• timeseries (iterable of floats, or Timeseries) – Time series data.

• ensemble_member – The ensemble member index.

• output – Whether to include this time series in output data files.

• check_consistency – Whether to check consistency between the time stamps on the
new timeseries object and any existing time stamps.
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solver_options()→ Dict[str, Union[str, int, float]]
Returns a dictionary of CasADi optimization problem solver options.

The default solver for continuous problems is Ipopt. The default solver for mixed integer problems is
Bonmin.

Returns A dictionary of solver options. See the CasADi and respective solver documentation
for details.

solver_success(solver_stats: Dict[str, Union[str, bool]], log_solver_failure_as_error: bool)→ Tu-
ple[bool, int]

Translates the returned solver statistics into a boolean and log level to indicate whether the solve was
succesful, and how to log it.

Parameters

• solver_stats – Dictionary containing information about the solver status. See expla-
nation below.

• log_solver_failure_as_error – Indicates whether a solve failure Should be
logged as an error or info message.

solver_stats typically consist of three fields:

• return_status: str

• secondary_return_status: str

• success: bool

By default we rely on CasADi’s interpretation of the return_status (and secondary status) to the success
variable, with an exception for IPOPT (see below).

The logging level is typically logging.INFO for success, and logging.ERROR for failure. Only for
IPOPT an exception is made for Not_Enough_Degrees_Of_Freedom, which returns logging.WARNING
instead. For example, this can happen when too many goals are specified, and lower priority goals cannot
improve further on the current result.

Returns A tuple indicating whether or not the solver has succeeded, and what level to log it
with.

state(variable: str)→ casadi.casadi.MX
Returns an MX symbol for the given state, not bound to any time.

Parameters variable – Variable name.

Returns MX symbol for given state.

Raises KeyError

state_at(variable: str, t: float, ensemble_member: int = 0, scaled: bool = False) →
casadi.casadi.MX

Returns an MX symbol representing the given variable at the given time.

Parameters

• variable – Variable name.

• t – Time.

• ensemble_member – The ensemble member index.

• scaled – True to return the scaled variable.

Returns MX symbol representing the state at the given time.

Raises KeyError

1.2. Optimization 11
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states_in(variable: str, t0: float = None, tf: float = None, ensemble_member: int = 0) → Itera-
tor[casadi.casadi.MX]

Iterates over symbols for states in the interval [t0, tf].

Parameters

• variable – Variable name.

• t0 – Left bound of interval. If equal to None, the initial time is used.

• tf – Right bound of interval. If equal to None, the final time is used.

• ensemble_member – The ensemble member index.

Raises KeyError

timeseries_at(variable: str, t: float, ensemble_member: int = 0)→ float
Return the value of a time series at the given time.

Parameters

• variable – Variable name.

• t – Time.

• ensemble_member – The ensemble member index.

Returns The interpolated value of the time series.

Raises KeyError

rtctools.util.run_optimization_problem(optimization_problem_class, base_folder=’..’,
log_level=20, profile=False)

Sets up and solves an optimization problem.

This function makes the following assumptions:

1. That the base_folder contains subfolders input, output, and model, containing input data, output
data, and the model, respectively.

2. When using CSVLookupTableMixin, that the base folder contains a subfolder lookup_tables.

3. When using ModelicaMixin, that the base folder contains a subfolder model.

4. When using ModelicaMixin, that the toplevel Modelica model name equals the class name.

Parameters

• optimization_problem_class – Optimization problem class to solve.

• base_folder – Base folder.

• log_level – The log level to use.

• profile – Whether or not to enable profiling.

Returns OptimizationProblem instance.

1.2.2 Time discretization

class rtctools.optimization.collocated_integrated_optimization_problem.CollocatedIntegratedOptimizationProblem(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Discretizes your model using a mixed collocation/integration scheme.
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Collocation means that the discretized model equations are included as constraints between state variables in
the optimization problem.

Note: To ensure that your optimization problem only has globally optimal solutions, any model equations
that are collocated must be linear. By default, all model equations are collocated, and linearity of the model
equations is verified. Working with non-linear models is possible, but discouraged.

Variables check_collocation_linearity – If True, check whether collocation con-
straints are linear. Default is True.

integrated_states
A list of states that are integrated rather than collocated.

Warning: This is an experimental feature.

integrator_options()
Configures the implicit function used for time step integration.

Returns A dictionary of CasADi rootfinder options. See the CasADi documentation for
details.

interpolation_method(variable=None)
Interpolation method for variable.

Parameters variable – Variable name.

Returns Interpolation method for the given variable.

theta
RTC-Tools discretizes differential equations of the form

�̇� = 𝑓(𝑥, 𝑢)

using the 𝜃-method

𝑥𝑖+1 = 𝑥𝑖 + ∆𝑡 [𝜃𝑓(𝑥𝑖+1, 𝑢𝑖+1) + (1 − 𝜃)𝑓(𝑥𝑖, 𝑢𝑖)]

The default is 𝜃 = 1, resulting in the implicit or backward Euler method. Note that in this case, the control
input at the initial time step is not used.

Set 𝜃 = 0 to use the explicit or forward Euler method. Note that in this case, the control input at the final
time step is not used.

Warning: This is an experimental feature for 0 < 𝜃 < 1.

times(variable=None)
List of time stamps for variable.

Parameters variable – Variable name.

Returns A list of time stamps for the given variable.

1.2. Optimization 13
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1.2.3 Modelica models

To learn the basics of modelling with Modelica, please refer to the online book Modelica by Example.

class rtctools.optimization.modelica_mixin.ModelicaMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds a Modelica model to your optimization problem.

During preprocessing, the Modelica files located inside the model subfolder are loaded.

Variables modelica_library_folders – Folders in which any referenced Modelica libraries
are to be found. Default is an empty list.

1.2.4 CSV I/O

class rtctools.optimization.csv_mixin.CSVMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds reading and writing of CSV timeseries and parameters to your optimization problem.

During preprocessing, files named timeseries_import.csv, initial_state.csv, and
parameters.csv are read from the input subfolder.

During postprocessing, a file named timeseries_export.csv is written to the output subfolder.

In ensemble mode, a file named ensemble.csv is read from the input folder. This file contains two
columns. The first column gives the name of the ensemble member, and the second column its probability.
Furthermore, the other XML files appear one level deeper inside the filesystem hierarchy, inside subfolders with
the names of the ensemble members.

Variables

• csv_delimiter – Column delimiter used in CSV files. Default is ,.

• csv_equidistant – Whether or not the timeseries data is equidistant. Default is True.

• csv_ensemble_mode – Whether or not to use ensembles. Default is False.

• csv_validate_timeseries – Check consistency of timeseries. Default is True.

max_timeseries_id(variable: str)→ str
Returns the name of the upper bound timeseries for the specified variable.

Parameters variable – Variable name.

min_timeseries_id(variable: str)→ str
Returns the name of the lower bound timeseries for the specified variable.

Parameters variable – Variable name.

1.2.5 Delft-FEWS I/O

class rtctools.optimization.pi_mixin.PIMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds Delft-FEWS Published Interface I/O to your optimization problem.

During preprocessing, files named rtcDataConfig.xml, timeseries_import.xml,
rtcParameterConfig.xml, and rtcParameterConfig_Numerical.xml are read from the
input subfolder. rtcDataConfig.xml maps tuples of FEWS identifiers, including location and parameter
ID, to RTC-Tools time series identifiers.

14 Chapter 1. Contents
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During postprocessing, a file named timeseries_export.xml is written to the output subfolder.

Variables

• pi_binary_timeseries – Whether to use PI binary timeseries format. Default is
False.

• pi_parameter_config_basenames – List of parameter config file basenames to
read. Default is [rtcParameterConfig].

• pi_parameter_config_numerical_basename – Numerical config file basename
to read. Default is rtcParameterConfig_Numerical.

• pi_check_for_duplicate_parameters – Check if duplicate parameters are read.
Default is True.

• pi_validate_timeseries – Check consistency of timeseries. Default is True.

max_timeseries_id(variable: str)→ str
Returns the name of the upper bound timeseries for the specified variable.

Parameters variable – Variable name

min_timeseries_id(variable: str)→ str
Returns the name of the lower bound timeseries for the specified variable.

Parameters variable – Variable name

timeseries_export
pi.Timeseries object for holding the output data.

timeseries_import
pi.Timeseries object containing the input data.

timeseries_import_times
List of time stamps for which input data is specified.

The time stamps are in seconds since t0, and may be negative.

1.2.6 Bookkeeping of linearization parameters

class rtctools.optimization.linearization_mixin.LinearizationMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds linearized equation parameter bookkeeping to your optimization aproblem.

If your model contains linearized equations, this mixin will set the parameters of these equations based on the
t0 value of an associated timeseries.

The mapping between linearization parameters and time series is provided in the
linearization_parameters method.

linearization_parameters()→ Dict[str, str]

Returns A dictionary of parameter names mapping to time series identifiers.

1.2. Optimization 15
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1.2.7 Lookup tables

class rtctools.optimization.csv_lookup_table_mixin.LookupTable(inputs:
List[casadi.casadi.MX],
function:
casadi.casadi.Function,
tck: Tuple =
None)

Bases: object

Lookup table.

__call__(*args)→ Union[float, rtctools.optimization.timeseries.Timeseries]
Evaluate the lookup table.

Parameters args (Float, iterable of floats, or Timeseries) – Input values.

Returns Lookup table evaluated at input values.

Example use:

y = lookup_table(1.0)
[y1, y2] = lookup_table([1.0, 2.0])

class rtctools.optimization.csv_lookup_table_mixin.CSVLookupTableMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds lookup tables to your optimization problem.

During preprocessing, the CSV files located inside the lookup_tables subfolder are read. In every CSV
file, the first column contains the output of the lookup table. Subsequent columns contain the input variables.

Cubic B-Splines are used to turn the data points into continuous lookup tables.

Optionally, a file curvefit_options.ini may be included inside the lookup_tables folder. This file
contains, grouped per lookup table, the following options:

• monotonicity:

– is an integer, magnitude is ignored

– if positive, causes spline to be monotonically increasing

– if negative, causes spline to be monotonically decreasing

– if 0, leaves spline monotonicity unconstrained

• curvature:

– is an integer, magnitude is ignored

– if positive, causes spline curvature to be positive (convex)

– if negative, causes spline curvature to be negative (concave)

– if 0, leaves spline curvature unconstrained

Note: Currently only one-dimensional lookup tables are fully supported. Support for two- dimensional lookup
tables is experimental.

Variables

• csv_delimiter – Column delimiter used in CSV files. Default is ,.
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• csv_lookup_table_debug – Whether to generate plots of the spline fits. Default is
false.

• csv_lookup_table_debug_points – Number of evaluation points for plots. De-
fault is 100.

lookup_tables(ensemble_member)
Returns a dictionary of lookup tables.

Parameters ensemble_member – The ensemble member index.

Returns A dictionary of variable names and lookup tables.

1.2.8 Treatment of nonconvexities using homotopy

Using homotopy, a convex optimization problem can be continuously deformed into a non-convex problem.

class rtctools.optimization.homotopy_mixin.HomotopyMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds homotopy to your optimization problem. A homotopy is a continuous transformation between two opti-
mization problems, parametrized by a single parameter 𝜃 ∈ [0, 1].

Homotopy may be used to solve non-convex optimization problems, by starting with a convex approximation at
𝜃 = 0.0 and ending with the non-convex problem at 𝜃 = 1.0.

Note: It is advised to look for convex reformulations of your problem, before resorting to a use of the (poten-
tially expensive) homotopy process.

homotopy_options()→ Dict[str, Union[str, float]]
Returns a dictionary of options controlling the homotopy process.

Option Type Default value
delta_theta_0 float 1.0
delta_theta_min float 0.01
homotopy_parameter string theta

The homotopy process is controlled by the homotopy parameter in the model, specified by the option
homotopy_parameter. The homotopy parameter is initialized to 0.0, and increases to a value of
1.0 with a dynamically changing step size. This step size is initialized with the value of the option
delta_theta_0. If this step size is too large, i.e., if the problem with the increased homotopy parameter
fails to converge, the step size is halved. The process of halving terminates when the step size falls below
the minimum value specified by the option delta_theta_min.

Returns A dictionary of homotopy options.

1.2.9 Initial state estimation

class rtctools.optimization.initial_state_estimation_mixin.InitialStateEstimationMixin(**kwargs)
Bases: rtctools.optimization.goal_programming_mixin.GoalProgrammingMixin

Adds initial state estimation to your optimization problem using goal programming.

Before any other goals are evaluated, first, the deviation between initial state measurements and their respective
model states is minimized in the least squares sense (1DVAR, priority -2). Secondly, the distance between pairs
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of states is minimized, again in the least squares sense, so that “smooth” initial guesses are provided for states
without measurements (priority -1).

Note: There are types of problems where, in addition to minimizing differences between states and measure-
ments, it is advisable to perform a steady-state initialization using additional initial-time model equations. For
hydraulic models, for instance, it is often helpful to require that the time-derivative of the flow variables vanishes
at the initial time.

initial_state_measurements()→ List[Union[Tuple[str, str], Tuple[str, str, float]]]
List of pairs (state, measurement_id) or triples (state, measurement_id,
max_deviation), relating states to measurement time series IDs.

The default maximum deviation is 1.0.

initial_state_smoothing_pairs()→ List[Union[Tuple[str, str], Tuple[str, str, float]]]
List of pairs (state1, state2) or triples (state1, state2, max_deviation), relating
states the distance of which is to be minimized.

The default maximum deviation is 1.0.

1.2.10 Multi-objective optimization

class rtctools.optimization.goal_programming_mixin.Goal
Bases: object

Base class for lexicographic goal programming goals.

A goal is defined by overriding the function() method.

Variables

• function_range – Range of goal function. Required if a target is set.

• function_nominal – Nominal value of function. Used for scaling. Default is 1.

• target_min – Desired lower bound for goal function. Default is numpy.nan.

• target_max – Desired upper bound for goal function. Default is numpy.nan.

• priority – Integer priority of goal. Default is 1.

• weight – Optional weighting applied to the goal. Default is 1.0.

• order – Penalization order of goal violation. Default is 2.

• critical – If True, the algorithm will abort if this goal cannot be fully met. Default is
False.

• relaxation – Amount of slack added to the hard constraints related to the goal. Must be
a nonnegative value. Default is 0.0.

The target bounds indicate the range within the function should stay, if possible. Goals are, in that sense, soft,
as opposed to standard hard constraints.

Four types of goals can be created:

1. Minimization goal if no target bounds are set:

min 𝑓

2. Lower bound goal if target_min is set:
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𝑚 ≤ 𝑓

3. Upper bound goal if target_max is set:

𝑓 ≤ 𝑀

4. Combined lower and upper bound goal if target_min and target_max are both set:

𝑚 ≤ 𝑓 ≤ 𝑀

Lower priority goals take precedence over higher priority goals.

Goals with the same priority are weighted off against each other in a single objective function.

In goals where a target is set:

• The function range interval must be provided as this is used to introduce hard constrains on the value
that the function can take. If one is unsure about which value the function can take, it is recom-
mended to overestimate this interval. However, an overestimated interval will negatively influence
how accurately the target bounds are met.

• The target provided must be contained in the function range.

• The function nominal is used to scale the constraints.

• If both a target_min and a target_max are set, the target maximum must be at least equal to minimum
one.

In minimization goals:

• The function range is not used and therefore cannot be set.

• The function nominal is used to scale the function value in the objective function. To ensure that all
goals are given a similar importance, it is crucial to provide an accurate estimate of this parameter.

The goal violation value is taken to the order’th power in the objective function of the final optimization problem.

Relaxation is used to loosen the constraints that are set after the optimization of the goal’s priority. The unit of
the relaxation is equal to that of the goal function.

Example definition of the point goal 𝑥(𝑡) ≥ 1.1 for 𝑡 = 1.0 at priority 1:

class MyGoal(Goal):
def function(self, optimization_problem, ensemble_member):

# State 'x' at time t = 1.0
t = 1.0
return optimization_problem.state_at('x', t, ensemble_member)

function_range = (1.0, 2.0)
target_min = 1.1
priority = 1

Example definition of the path goal 𝑥(𝑡) ≥ 1.1 for all 𝑡 at priority 2:

1.2. Optimization 19



RTC-Tools Documentation, Release 2.2.0b1+113.ge0e434a

class MyPathGoal(Goal):
def function(self, optimization_problem, ensemble_member):

# State 'x' at any point in time
return optimization_problem.state('x')

function_range = (1.0, 2.0)
target_min = 1.1
priority = 2

Note that for path goals, the ensemble member index is not passed to the call to OptimizationProblem.
state(). This call returns a time-independent symbol that is also independent of the active ensemble member.
Path goals are applied to all times and all ensemble members simultaneously.

function(optimization_problem: rtctools.optimization.optimization_problem.OptimizationProblem,
ensemble_member: int)→ casadi.casadi.MX

This method returns a CasADi MX object describing the goal function.

Returns A CasADi MX object.

get_function_key(optimization_problem: rtctools.optimization.optimization_problem.OptimizationProblem,
ensemble_member: int)→ str

Returns a key string uniquely identifying the goal function. This is used to eliminate linearly dependent
constraints from the optimization problem.

has_target_bounds
True if the user goal has min/max bounds.

has_target_max
True if the user goal has max bounds.

has_target_min
True if the user goal has min bounds.

class rtctools.optimization.goal_programming_mixin.StateGoal(optimization_problem)
Bases: rtctools.optimization.goal_programming_mixin.Goal

Base class for lexicographic goal programming path goals that act on a single model state.

A state goal is defined by setting at least the state class variable.

Variables

• state – State on which the goal acts. Required.

• target_min – Desired lower bound for goal function. Default is numpy.nan.

• target_max – Desired upper bound for goal function. Default is numpy.nan.

• priority – Integer priority of goal. Default is 1.

• weight – Optional weighting applied to the goal. Default is 1.0.

• order – Penalization order of goal violation. Default is 2.

• critical – If True, the algorithm will abort if this goal cannot be fully met. Default is
False.

Example definition of the goal 𝑥(𝑡) ≥ 1.1 for all 𝑡 at priority 2:

class MyStateGoal(StateGoal):
state = 'x'
target_min = 1.1
priority = 2
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Contrary to ordinary Goal objects, PathGoal objects need to be initialized with an
OptimizationProblem instance to allow extraction of state metadata, such as bounds and nominal
values. Consequently, state goals must be instantiated as follows:

my_state_goal = MyStateGoal(optimization_problem)

Note that StateGoal is a helper class. State goals can also be defined using Goal as direct base class,
by implementing the function method and providing the function_range and function_nominal
class variables manually.

__init__(optimization_problem)
Initialize the state goal object.

Parameters optimization_problem – OptimizationProblem instance.

class rtctools.optimization.goal_programming_mixin.GoalProgrammingMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds lexicographic goal programming to your optimization problem.

goal_programming_options()→ Dict[str, Union[float, bool]]
Returns a dictionary of options controlling the goal programming process.

Option Type Default value
violation_relaxation float 0.0
constraint_relaxation float 0.0
mu_reinit bool True
fix_minimized_values bool True/False
check_monotonicity bool True
equality_threshold float 1e-8
interior_distance float 1e-6
scale_by_problem_size bool False
keep_soft_constraints bool False

Before turning a soft constraint of the goal programming algorithm into a hard constraint, the violation
variable (also known as epsilon) of each goal is relaxed with the violation_relaxation. Use of
this option is normally not required.

When turning a soft constraint of the goal programming algorithm into a hard constraint, the constraint is
relaxed with constraint_relaxation. Use of this option is normally not required. Note that:

1. Minimization goals do not get constraint_relaxation applied when
fix_minimized_values is True.

2. Because of the constraints it generates, when keep_soft_constraints is True, the option
fix_minimized_values needs to be set to False for the constraint_relaxation to be
applied at all.

A goal is considered to be violated if the violation, scaled between 0 and 1, is greater than the specified
tolerance. Violated goals are fixed. Use of this option is normally not required.

When using the default solver (IPOPT), its barrier parameter mu is normally re-initialized a every iteration
of the goal programming algorithm, unless mu_reinit is set to False. Use of this option is normally not
required.

If fix_minimized_values is set to True, goal functions will be set to equal their optimized values
in optimization problems generated during subsequent priorities. Otherwise, only an upper bound will be
set. Use of this option is normally not required. Note that a non-zero goal relaxation overrules this option;
a non-zero relaxation will always result in only an upper bound being set. Also note that the use of this
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option may add non-convex constraints to the optimization problem. The default value for this parameter
is True for the default solvers IPOPT/BONMIN. If any other solver is used, the default value is False.

If check_monotonicity is set to True, then it will be checked whether goals with the same function
key form a monotonically decreasing sequence with regards to the target interval.

The option equality_threshold controls when a two-sided inequality constraint is folded into an
equality constraint.

The option interior_distance controls the distance from the scaled target bounds, starting from
which the function value is considered to lie in the interior of the target space.

If scale_by_problem_size is set to True, the objective (i.e. the sum of the violation variables) will
be divided by the number of goals, and the path objective will be divided by the number of path goals and
the number of time steps. This will make sure the objectives are always in the range [0, 1], at the cost of
solving each goal/time step less accurately.

The option keep_soft_constraints controls how the epsilon variables introduced in the target
goals are dealt with in subsequent priorities. If keep_soft_constraints is set to False, each
epsilon is replaced by its computed value and those are used to derive a new set of constraints. If
keep_soft_constraints is set to True, the epsilons are kept as variables and the constraints are
not modified. To ensure the goal programming philosophy, i.e., Pareto optimality, a single constraint is
added to enforce that the objective function must always be at most the objective value. This method allows
for a larger solution space, at the cost of having a (possibly) more complex optimization problem. Indeed,
more variables are kept around throughout the optimization and any objective function is turned into a
constraint for the subsequent priorities (while in the False option this was the case only for the function of
minimization goals).

Returns A dictionary of goal programming options.

goals()→ List[rtctools.optimization.goal_programming_mixin.Goal]
User problem returns list of Goal objects.

Returns A list of goals.

path_goals()→ List[rtctools.optimization.goal_programming_mixin.Goal]
User problem returns list of path Goal objects.

Returns A list of path goals.

priority_completed(priority: int)→ None
Called after optimization for goals of certain priority is completed.

Parameters priority – The priority level that was completed.

priority_started(priority: int)→ None
Called when optimization for goals of certain priority is started.

Parameters priority – The priority level that was started.

1.2.11 Forecast uncertainty

class rtctools.optimization.control_tree_mixin.ControlTreeMixin(**kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds a stochastic control tree to your optimization problem.

control_tree_options()→ Dict[str, Union[List[str], List[float], int]]
Returns a dictionary of options controlling the creation of a k-ary stochastic tree.
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Option Type Default value
forecast_variables list of strings All constant inputs
branching_times list of floats self.times()
k int 2

A k-ary tree is generated, branching at every interior branching time. Ensemble members are clustered to
paths through the tree based on average distance over all forecast variables.

Returns A dictionary of control tree generation options.

1.3 Simulation

Note: For a simulation example, see Simulation examples

Contents:

1.3.1 Basics

class rtctools.simulation.simulation_problem.SimulationProblem(**kwargs)
Bases: object

Implements the BMI Interface.

Base class for all Simulation problems. Loads the Modelica Model.

Variables modelica_library_folders – Folders containing any referenced Modelica li-
braries. Default is an empty list.

get_current_time()
Return current time of simulation.

Returns The current simulation time.

get_end_time()
Return end time of experiment.

Returns The end time of the experiment.

get_start_time()
Return start time of experiment.

Returns The start time of the experiment.

get_var(name)
Return a numpy array from FMU.

Parameters name – Variable name.

Returns The value of the variable.

get_var_count()
Return the number of variables in the model.

Returns The number of variables in the model.

get_var_name(i)
Returns the name of a variable.
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Parameters i – Index in ordered dictionary returned by method get_variables.

Returns The name of the variable.

get_var_rank(name)
Not implemented

get_var_shape(name)
Not implemented

get_var_type(name)
Return type, compatible with numpy.

Parameters name – String variable name.

Returns The numpy-compatible type of the variable.

Raises KeyError

get_variables()
Return all variables (both internal and user defined)

Returns An ordered dictionary of all variables supported by the model.

initialize(config_file=None)
Initialize state vector with default values

Parameters config_file – Path to an initialization file.

post()
Any postprocessing takes place here.

pre()
Any preprocessing takes place here.

reset()
Reset the FMU.

setup_experiment(start, stop, dt)
Method for subclasses (PIMixin, CSVMixin, or user classes) to set timing information for a simulation
run.

Parameters

• start – Start time for the simulation.

• stop – Final time for the simulation.

• dt – Time step size.

simulate()
Run model from start_time to end_time.

update(dt)
Performs one timestep.

The methods setup_experiment and initialize must have been called before.

Parameters dt – Time step size.

rtctools.util.run_simulation_problem(simulation_problem_class, base_folder=’..’,
log_level=20)

Sets up and runs a simulation problem.

Parameters

• simulation_problem_class – Optimization problem class to solve.
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• base_folder – Folder within which subfolders “input”, “output”, and “model” exist,
containing input and output data, and the model, respectively.

• log_level – The log level to use.

Returns SimulationProblem instance.

1.3.2 CSV I/O

class rtctools.simulation.csv_mixin.CSVMixin(**kwargs)
Bases: rtctools.simulation.simulation_problem.SimulationProblem

Adds reading and writing of CSV timeseries and parameters to your simulation problem.

During preprocessing, files named timeseries_import.csv, initial_state.csv, and
parameters.csv are read from the input subfolder.

During postprocessing, a file named timeseries_export.csv is written to the output subfolder.

Variables

• csv_delimiter – Column delimiter used in CSV files. Default is ,.

• csv_validate_timeseries – Check consistency of timeseries. Default is True.

timeseries_at(variable, t)
Return the value of a timeseries at the given time.

Parameters

• variable – Variable name.

• t – Time.

Returns The interpolated value of the time series.

Raises KeyError

1.3.3 Delft-FEWS I/O

class rtctools.simulation.pi_mixin.PIMixin(**kwargs)
Bases: rtctools.simulation.simulation_problem.SimulationProblem

Adds Delft-FEWS Published Interface I/O to your simulation problem.

During preprocessing, files named rtcDataConfig.xml, timeseries_import.xml,
and‘‘rtcParameterConfig.xml‘‘ are read from the input subfolder. rtcDataConfig.xml maps tu-
ples of FEWS identifiers, including location and parameter ID, to RTC-Tools time series identifiers.

During postprocessing, a file named timeseries_export.xml is written to the output subfolder.

Variables

• pi_binary_timeseries – Whether to use PI binary timeseries format. Default is
False.

• pi_parameter_config_basenames – List of parameter config file basenames to
read. Default is [rtcParameterConfig].

• pi_check_for_duplicate_parameters – Check if duplicate parameters are read.
Default is True.

• pi_validate_timeseries – Check consistency of timeseries. Default is True.
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timeseries_at(variable, t)
Return the value of a time series at the given time.

Parameters

• variable – Variable name.

• t – Time.

Returns The interpolated value of the time series.

Raises KeyError

1.4 Examples

This section provides examples demonstrating key features of RTC-Tools.

1.4.1 Optimization examples

This section provides examples demonstrating key features of RTC-Tools optimization.

Filling a Reservoir

Overview

The purpose of this example is to understand the technical setup of an RTC-Tools model, how to run the model, and
how to interpret the results.

The scenario is the following: A reservoir operator is trying to fill a reservoir. They are given a six-day forecast of
inflows given in 12-hour increments. The operator wants to save as much of the inflows as possible, but does not want
to end up with too much water at the end of the six days. They have chosen to use RTC-Tools to calculate how much
water to release and when to release it.
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If you installed using source, the library and examples directory are available in the git repositories. If you installed us-
ing pip directly, you first need to download/copy the examples and libraries to a convenient location. See Downloading
and running examples and Copying Modelica libraries for detailed instructions.

The folder <examples directory>\basic contains a complete RTC-Tools optimization problem. An RTC-
Tools directory has the following structure:

• input: This folder contains the model input data. These are several files in comma separated value format,
csv.

• model: This folder contains the Modelica model. The Modelica model contains the physics of the RTC-Tools
model.

• output: The folder where the output is saved in the file timeseries_export.csv.

• src: This folder contains a Python file. This file contains the configuration of the model and is used to run the
model .

The Model

The first step is to develop a physical model of the system. The model can be viewed and edited using the OpenMod-
elica Connection Editor (OMEdit) program. For how to download and start up OMEdit, see Getting OMEdit.

1. Load the Deltares library into OMEdit

• Using the menu bar: File -> Open Model/Library File(s)

• Select <library directory>\Deltares\package.mo

2. Load the example model into OMEdit

• Using the menu bar: File -> Open Model/Library File(s)

• Select <examples directory>\basic\model\Example.mo

Once loaded, we have an OpenModelica Connection Editor window that looks like this:

The model Example.mo represents a simple system with the following elements:
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• a reservoir, modeled as storage element Deltares.ChannelFlow.SimpleRouting.Storage.
Storage,

• an inflow boundary condition Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.
Inflow,

• an outfall boundary condition Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.
Terminal,

• connectors (black lines) connecting the elements.

You can use the mouse-over feature help to identify the predefined models from the Deltares library. You can also
drag the elements around- the connectors will move with the elements. Adding new elements is easy- just drag them
in from the Deltares Library on the sidebar. Connecting the elements is just as easy- click and drag between the ports
on the elements.

In text mode, the Modelica model looks as follows (with annotation statements removed):

1 model Example
2 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Inflow inflow;
3 Deltares.ChannelFlow.SimpleRouting.Storage.Storage storage(V(nominal=4e5, min=2e5,

→˓max=6e5));
4 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Terminal outfall;
5 input Modelica.SIunits.VolumeFlowRate Q_in(fixed = true);
6 input Modelica.SIunits.VolumeFlowRate Q_release(fixed = false, min = 0.0, max = 6.

→˓5);
7 output Modelica.SIunits.Volume V_storage;
8 equation
9 connect(inflow.QOut, storage.QIn);

10 connect(storage.QOut, outfall.QIn);
11 storage.Q_release = Q_release;
12 inflow.Q = Q_in;
13 V_storage = storage.V;
14 end Example;

The three water system elements (storage, inflow, and outfall) appear under the model Example statement. The
equation part connects these three elements with the help of connections. Note that storage extends the partial
model QSISO which contains the connectors QIn and QOut. With QSISO, storage can be connected on two sides.
The storage element also has a variable Q_release, which is the decision variable the operator controls.

OpenModelica Connection Editor will automatically generate the element and connector entries in the text text file.
Defining inputs and outputs requires editing the text file directly. Relationships between the inputs and outputs and the
library elements must also be defined in the equation section.

In addition to elements, the input variables Q_in and Q_release are also defined. Q_in is determined by the
forecast and the operator cannot control it, so we set Q_in(fixed = true). The actual values of Q_in are
stored in timeseries_import.csv. In the equation section, equations are defined to relate the inputs to the
appropriate water system elements.

Because we want to view the water volume in the storage element in the output file, we also define an output variable
V_storage.

The Optimization Problem

The python script is created and edited in a text editor. In general, the python script consists of the following blocks:

• Import of packages

• Definition of the optimization problem class
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– Constructor

– Objective function

– Definition of constraints

– Any additional configuration

• A run statement

Importing Packages

Packages are imported using from ... import ... at the top of the file. In our script, we import the classes we
want the class to inherit, the package run_optimization_problem form the rtctools.util package, and
any extra packages we want to use. For this example, the import block looks like:

1 from rtctools.optimization.collocated_integrated_optimization_problem \
2 import CollocatedIntegratedOptimizationProblem
3 from rtctools.optimization.csv_mixin import CSVMixin
4 from rtctools.optimization.modelica_mixin import ModelicaMixin
5 from rtctools.util import run_optimization_problem

Optimization Problem

The next step is to define the optimization problem class. We construct the class by declaring the class and inheriting
the desired parent classes. The parent classes each perform different tasks related to importing and exporting data and
solving the optimization problem. Each imported class makes a set of methods available to the our optimization class.

8 class Example(CSVMixin, ModelicaMixin, CollocatedIntegratedOptimizationProblem):

Next, we define an objective function. This is a class method that returns the value that needs to be minimized.

12 def objective(self, ensemble_member):
13 # Minimize water pumped. The total water pumped is the integral of the
14 # water pumped from the starting time until the stoping time. In
15 # practice, self.integral() is a summation of all the discrete states.
16 return self.integral('Q_release', ensemble_member)

Constraints can be declared by declaring the path_constraints() method. Path constraints are constraints
that are applied every timestep. To set a constraint at an individual timestep, we could define it inside the
constraints() method.

Other parent classes also declare this method, so we call the super() method so that we don’t overwrite their
behaviour.

18 def path_constraints(self, ensemble_member):
19 # Call super() class to not overwrite default behaviour
20 constraints = super().path_constraints(ensemble_member)
21 # Constrain the volume of storage between 380000 and 420000 m^3
22 constraints.append((self.state('storage.V'), 380000, 420000))
23 return constraints
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Run the Optimization Problem

To make our script run, at the bottom of our file we just have to call the run_optimization_problem() method
we imported on the optimization problem class we just created.

27 run_optimization_problem(Example)

The Whole Script

All together, the whole example script is as follows:

1 from rtctools.optimization.collocated_integrated_optimization_problem \
2 import CollocatedIntegratedOptimizationProblem
3 from rtctools.optimization.csv_mixin import CSVMixin
4 from rtctools.optimization.modelica_mixin import ModelicaMixin
5 from rtctools.util import run_optimization_problem
6

7

8 class Example(CSVMixin, ModelicaMixin, CollocatedIntegratedOptimizationProblem):
9 """

10 A basic example for introducing users to RTC-Tools 2
11 """
12 def objective(self, ensemble_member):
13 # Minimize water pumped. The total water pumped is the integral of the
14 # water pumped from the starting time until the stoping time. In
15 # practice, self.integral() is a summation of all the discrete states.
16 return self.integral('Q_release', ensemble_member)
17

18 def path_constraints(self, ensemble_member):
19 # Call super() class to not overwrite default behaviour
20 constraints = super().path_constraints(ensemble_member)
21 # Constrain the volume of storage between 380000 and 420000 m^3
22 constraints.append((self.state('storage.V'), 380000, 420000))
23 return constraints
24

25

26 # Run
27 run_optimization_problem(Example)

Running RTC-Tools

To run this basic example in RTC-Tools, navigate to the basic example src directory in the RTC-Tools shell and run
the example using python example.py. For more details about using RTC-Tools, see Running RTC-Tools.

Extracting Results

The results from the run are found in output\timeseries_export.csv. Any CSV-reading software can im-
port it, but this is what the results look like when plotted in Microsoft Excel:
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This plot shows that the operator is able to keep the water level within the bounds over the entire time horizon and end
with a full reservoir.

Feel free to experiment with this example. See what happens if you change the max of Q_release (in the Modelica
file) or if you make the objective function negative (in the python script).
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Mixed Integer Optimization: Pumps and Orifices

Note: This example focuses on how to incorporate mixed integer components into a hydraulic model, and assumes
basic exposure to RTC-Tools. To start with basics, see Filling a Reservoir.

Note: By default, if you define any integer or boolean variables in the model, RTC-Tools will switch from IPOPT
to BONMIN. You can modify solver options by overriding the solver_options() method. Refer to CasADi’s
nlpsol interface for a list of supported solvers.

The Model

For this example, the model represents a typical setup for the dewatering of lowland areas. Water is routed from
the hinterland (modeled as discharge boundary condition, right side) through a canal (modeled as storage element)
towards the sea (modeled as water level boundary condition on the left side). Keeping the lowland area dry requires
that enough water is discharged to the sea. If the sea water level is lower than the water level in the canal, the water
can be discharged to the sea via gradient flow through the orifice (or a weir). If the sea water level is higher than in the
canal, water must be pumped.

To discharge water via gradient flow is free, while pumping costs money. The control task is to keep the water level
in the canal below a given flood warning level at minimum costs. The expected result is that the model computes a
control pattern that makes use of gradient flow whenever possible and activates the pump only when necessary.

The model can be viewed and edited using the OpenModelica Connection Editor program. First load the
Deltares library into OpenModelica Connection Editor, and then load the example model, located at <examples
directory>\mixed_integer\model\Example.mo. The model Example.mo represents a simple water
system with the following elements:

• a canal segment, modeled as storage element Deltares.ChannelFlow.Hydraulic.Storage.
Linear,

• a discharge boundary condition Deltares.ChannelFlow.Hydraulic.BoundaryConditions.
Discharge,
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• a water level boundary condition Deltares.ChannelFlow.Hydraulic.BoundaryConditions.
Level,

• a pump Deltares.ChannelFlow.Hydraulic.Structures.Pump

• an orifice modeled as a pump Deltares.ChannelFlow.Hydraulic.Structures.Pump

In text mode, the Modelica model looks as follows (with annotation statements removed):

1 model Example
2 // Declare Model Elements
3 Deltares.ChannelFlow.Hydraulic.Storage.Linear storage(A=1.0e6, H_b=0.0, HQ.H(min=0.

→˓0, max=0.5));
4 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge discharge;
5 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Level level;
6 Deltares.ChannelFlow.Hydraulic.Structures.Pump pump;
7 Deltares.ChannelFlow.Hydraulic.Structures.Pump orifice;
8

9 // Define Input/Output Variables and set them equal to model variables
10 input Modelica.SIunits.VolumeFlowRate Q_pump(fixed=false, min=0.0, max=7.0) = pump.

→˓Q;
11 input Boolean is_downhill;
12 input Modelica.SIunits.VolumeFlowRate Q_in(fixed=true) = discharge.Q;
13 input Modelica.SIunits.Position H_sea(fixed=true) = level.H;
14 input Modelica.SIunits.VolumeFlowRate Q_orifice(fixed=false, min=0.0, max=10.0) =

→˓orifice.Q;
15 output Modelica.SIunits.Position storage_level = storage.HQ.H;
16 output Modelica.SIunits.Position sea_level = level.H;
17 equation
18 // Connect Model Elements
19 connect(orifice.HQDown, level.HQ);
20 connect(storage.HQ, orifice.HQUp);
21 connect(storage.HQ, pump.HQUp);
22 connect(discharge.HQ, storage.HQ);
23 connect(pump.HQDown, level.HQ);
24 end Example;
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The five water system elements (storage, discharge boundary condition, water level boundary condition, pump, and ori-
fice) appear under the model Example statement. The equation part connects these five elements with the help
of connections. Note that Pump extends the partial model HQTwoPort which inherits from the connector HQPort.
With HQTwoPort, Pump can be connected on two sides. level represents a model boundary condition (model is
meant in a hydraulic sense here), so it can be connected to one other element only. It extends the HQOnePort which
again inherits from the connector HQPort.

In addition to elements, the input variables Q_in, H_sea, Q_pump, and Q_orifice are also defined. Be-
cause we want to view the water levels in the storage element in the output file, we also define output variables
storage_level and sea_level. It is usually easiest to set input and output variables equal to their correspond-
ing model variable in the same line.

To maintain the linearity of the model, we input the Boolean is_downhill as a way to keep track of whether water
can flow by gravity to the sea. This variable is not used directly in the hydraulics, but we use it later in the constraints
in the python file.

The Optimization Problem

The python script consists of the following blocks:

• Import of packages

• Definition of the optimization problem class

– Constructor

– Objective function

– Definition of constraints

– Additional configuration of the solver

• A run statement

Importing Packages

For this example, the import block is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem
5 from rtctools.optimization.csv_mixin import CSVMixin
6 from rtctools.optimization.modelica_mixin import ModelicaMixin

Note that we are also importing inf from numpy. We will use this later in the constraints.

Optimization Problem

Next, we construct the class by declaring it and inheriting the desired parent classes.

10 class Example(CSVMixin, ModelicaMixin, CollocatedIntegratedOptimizationProblem):

Now we define an objective function. This is a class method that returns the value that needs to be minimized. Here
we specify that we want to minimize the volume pumped:
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18 def objective(self, ensemble_member):
19 # Minimize water pumped. The total water pumped is the integral of the
20 # water pumped from the starting time until the stoping time. In
21 # practice, self.integral() is a summation of all the discrete states.
22 return self.integral('Q_pump', ensemble_member)

Constraints can be declared by declaring the path_constraints() method. Path constraints are constraints that
are applied every timestep. To set a constraint at an individual timestep, define it inside the constraints method.

The orifice BooleanSubmergedOrifice requires special constraints to be set in order to work. They are imple-
mented below in the path_constraints() method. their parent classes also declare this method, so we call the
super() method so that we don’t overwrite their behaviour.

26 def path_constraints(self, ensemble_member):
27 # Call super to get default constraints
28 constraints = super().path_constraints(ensemble_member)
29 M = 2 # The so-called "big-M"
30

31 # Release through orifice downhill only. This constraint enforces the
32 # fact that water only flows downhill.
33 constraints.append(
34 (self.state('Q_orifice') + (1 - self.state('is_downhill')) * 10,
35 0.0, 10.0))
36

37 # Make sure is_downhill is true only when the sea is lower than the
38 # water level in the storage.
39 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') -
40 (1 - self.state('is_downhill')) * M, -np.inf, 0.0))
41 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') +
42 self.state('is_downhill') * M, 0.0, np.inf))
43

44 # Orifice flow constraint. Uses the equation:
45 # Q(HUp, HDown, d) = width * C * d * (2 * g * (HUp - HDown)) ^ 0.5
46 # Note that this equation is only valid for orifices that are submerged
47 # units: description:
48 w = 3.0 # m width of orifice
49 d = 0.8 # m hight of orifice
50 C = 1.0 # none orifice constant
51 g = 9.8 # m/s^2 gravitational acceleration
52 constraints.append(
53 (((self.state('Q_orifice') / (w * C * d)) ** 2) / (2 * g) +
54 self.state('orifice.HQDown.H') - self.state('orifice.HQUp.H') -
55 M * (1 - self.state('is_downhill')),
56 -np.inf, 0.0))
57

58 return constraints

Finally, we want to apply some additional configuration, reducing the amount of information the solver outputs:

61 def solver_options(self):
62 options = super().solver_options()
63 # Restrict solver output
64 solver = options['solver']
65 options[solver]['print_level'] = 1
66 return options
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Run the Optimization Problem

To make our script run, at the bottom of our file we just have to call the run_optimization_problem() method
we imported on the optimization problem class we just created.

70 run_optimization_problem(Example)

The Whole Script

All together, the whole example script is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem
5 from rtctools.optimization.csv_mixin import CSVMixin
6 from rtctools.optimization.modelica_mixin import ModelicaMixin
7 from rtctools.util import run_optimization_problem
8

9

10 class Example(CSVMixin, ModelicaMixin, CollocatedIntegratedOptimizationProblem):
11 """
12 This class is the optimization problem for the Example. Within this class,
13 the objective, constraints and other options are defined.
14 """
15

16 # This is a method that returns an expression for the objective function.
17 # RTC-Tools always minimizes the objective.
18 def objective(self, ensemble_member):
19 # Minimize water pumped. The total water pumped is the integral of the
20 # water pumped from the starting time until the stoping time. In
21 # practice, self.integral() is a summation of all the discrete states.
22 return self.integral('Q_pump', ensemble_member)
23

24 # A path constraint is a constraint where the values in the constraint are a
25 # Timeseries rather than a single number.
26 def path_constraints(self, ensemble_member):
27 # Call super to get default constraints
28 constraints = super().path_constraints(ensemble_member)
29 M = 2 # The so-called "big-M"
30

31 # Release through orifice downhill only. This constraint enforces the
32 # fact that water only flows downhill.
33 constraints.append(
34 (self.state('Q_orifice') + (1 - self.state('is_downhill')) * 10,
35 0.0, 10.0))
36

37 # Make sure is_downhill is true only when the sea is lower than the
38 # water level in the storage.
39 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') -
40 (1 - self.state('is_downhill')) * M, -np.inf, 0.0))
41 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') +
42 self.state('is_downhill') * M, 0.0, np.inf))
43

44 # Orifice flow constraint. Uses the equation:
45 # Q(HUp, HDown, d) = width * C * d * (2 * g * (HUp - HDown)) ^ 0.5

(continues on next page)
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46 # Note that this equation is only valid for orifices that are submerged
47 # units: description:
48 w = 3.0 # m width of orifice
49 d = 0.8 # m hight of orifice
50 C = 1.0 # none orifice constant
51 g = 9.8 # m/s^2 gravitational acceleration
52 constraints.append(
53 (((self.state('Q_orifice') / (w * C * d)) ** 2) / (2 * g) +
54 self.state('orifice.HQDown.H') - self.state('orifice.HQUp.H') -
55 M * (1 - self.state('is_downhill')),
56 -np.inf, 0.0))
57

58 return constraints
59

60 # Any solver options can be set here
61 def solver_options(self):
62 options = super().solver_options()
63 # Restrict solver output
64 solver = options['solver']
65 options[solver]['print_level'] = 1
66 return options
67

68

69 # Run
70 run_optimization_problem(Example)

Running the Optimization Problem

Note: An explaination of bonmin behaviour and output goes here.

Extracting Results

The results from the run are found in output/timeseries_export.csv. Any CSV-reading software can im-
port it, but this is how results can be plotted using the python library matplotlib:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime

data_path = '../../../examples/mixed_integer/output/timeseries_export.csv'
delimiter = ','

# Import Data
ncols = len(np.genfromtxt(data_path, max_rows=1, delimiter=delimiter))
datefunc = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
results = np.genfromtxt(data_path, converters={0: datefunc}, delimiter=delimiter,

dtype='object' + ',float' * (ncols - 1), names=True,
→˓encoding=None)[1:]

(continues on next page)
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# Generate Plot
f, axarr = plt.subplots(2, sharex=True)
axarr[0].set_title('Water Level and Discharge')

# Upper subplot
axarr[0].set_ylabel('Water Level [m]')
axarr[0].plot(results['time'], results['storage_level'], label='Storage',

linewidth=2, color='b')
axarr[0].plot(results['time'], results['sea_level'], label='Sea',

linewidth=2, color='m')
axarr[0].plot(results['time'], 0.5 * np.ones_like(results['time']), label='Storage Max
→˓',

linewidth=2, color='r', linestyle='--')

# Lower Subplot
axarr[1].set_ylabel('Flow Rate [m3/s]')
axarr[1].plot(results['time'], results['Q_orifice'], label='Orifice',

linewidth=2, color='g')
axarr[1].plot(results['time'], results['Q_pump'], label='Pump',

linewidth=2, color='r')
axarr[1].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
f.autofmt_xdate()

# Shrink each axis by 20% and put a legend to the right of the axis
for i in range(len(axarr)):

box = axarr[i].get_position()
axarr[i].set_position([box.x0, box.y0, box.width * 0.8, box.height])
axarr[i].legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)

plt.autoscale(enable=True, axis='x', tight=True)

# Output Plot
plt.show()

Observations

Note that in the results plotted above, the pump runs with a constantly varying throughput. To smooth out the flow
through the pump, consider using goal programming to apply a path goal minimizing the derivative of the pump at
each timestep. For an example, see the third goal in Declaring Goals.

Goal Programming: Defining Multiple Objectives

Note: This example focuses on how to implement multi-objective optimization in RTC-Tools using Goal Program-
ming. It assumes basic exposure to RTC-Tools. If you are a first-time user of RTC-Tools, see Filling a Reservoir.

Goal programming is a way to satisfy (sometimes conflicting) goals by ranking the goals by priority. The optimization
algorithm will attempt to optimize each goal one at a time, starting with the goal with the highest priority and moving
down through the list. Even if a goal cannot be satisfied, the goal programming algorithm will move on when it has
found the best possible answer. Goals can be roughly divided into two types:

• As long as we satisfy the goal, we do not care by how much. If we cannot satisfy a goal, any lower priority goals
are not allowed to increase the amount by which we exceed (which is equivalent to not allowing any change at
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all to the exceedance).

• We try to achieve as low a value as possible. Any lower priority goals are not allowed to result in an increase of
this value (which is equivalent to not allowing any change at all).

In this example, we will be specifying two goals, on for each type. The higher priority goal will be to maintain the
water level of the storage element between two levels. The lower priority goal will be to minimize the total volume
pumped.

The Model

Note: This example uses the same hydraulic model as the MILP example. For a detailed explanation of the hydraulic
model, including how to to formulate mixed integers in your model, see Mixed Integer Optimization: Pumps and
Orifices.

For this example, the model represents a typical setup for the dewatering of lowland areas. Water is routed from
the hinterland (modeled as discharge boundary condition, right side) through a canal (modeled as storage element)
towards the sea (modeled as water level boundary condition on the left side). Keeping the lowland area dry requires
that enough water is discharged to the sea. If the sea water level is lower than the water level in the canal, the water
can be discharged to the sea via gradient flow through the orifice (or a weir). If the sea water level is higher than in the
canal, water must be pumped.

In OpenModelica Connection Editor, the model looks like this:

In text mode, the Modelica model looks as follows (with annotation statements removed):

1 model Example
2 // Declare Model Elements
3 Deltares.ChannelFlow.Hydraulic.Storage.Linear storage(A=1.0e6, H_b=0.0, HQ.H(min=0.

→˓0, max=0.5));
4 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge discharge;

(continues on next page)
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5 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Level level;
6 Deltares.ChannelFlow.Hydraulic.Structures.Pump pump;
7 Deltares.ChannelFlow.Hydraulic.Structures.Pump orifice;
8

9 // Define Input/Output Variables and set them equal to model variables
10 input Modelica.SIunits.VolumeFlowRate Q_pump(fixed=false, min=0.0, max=7.0) = pump.

→˓Q;
11 input Boolean is_downhill;
12 input Modelica.SIunits.VolumeFlowRate Q_in(fixed=true) = discharge.Q;
13 input Modelica.SIunits.Position H_sea(fixed=true) = level.H;
14 input Modelica.SIunits.VolumeFlowRate Q_orifice(fixed=false, min=0.0, max=10.0) =

→˓orifice.Q;
15 output Modelica.SIunits.Position storage_level = storage.HQ.H;
16 output Modelica.SIunits.Position sea_level = level.H;
17 equation
18 // Connect Model Elements
19 connect(orifice.HQDown, level.HQ);
20 connect(storage.HQ, orifice.HQUp);
21 connect(storage.HQ, pump.HQUp);
22 connect(discharge.HQ, storage.HQ);
23 connect(pump.HQDown, level.HQ);
24 end Example;

The Optimization Problem

When using goal programming, the python script consists of the following blocks:

• Import of packages

• Declaration of Goals

• Declaration of the optimization problem class

– Constructor

– Declaration of constraint methods

– Specification of Goals

– Declaration of a priority_completed() method

– Declaration of a pre() method

– Declaration of a post() method

– Additional configuration of the solver

• A run statement

Importing Packages

For this example, the import block is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem

(continues on next page)
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5 from rtctools.optimization.csv_mixin import CSVMixin
6 from rtctools.optimization.goal_programming_mixin \
7 import Goal, GoalProgrammingMixin, StateGoal
8 from rtctools.optimization.modelica_mixin import ModelicaMixin

Declaring Goals

Goals are defined as classes that inherit the Goal parent class. The components of goals can be found in Multi-
objective optimization. In this example, we demonstrate three ways to define a goal in RTC-Tools.

First, we have a high priority goal to keep the water level within a minimum and maximum. Since we are applying
this goal to a specific state (model variable) in our model at every time step, we can inherit a special helper class to
define this goal, called a StateGoal:

12 class WaterLevelRangeGoal(StateGoal):
13 # Applying a state goal to every time step is easily done by defining a goal
14 # that inherits StateGoal. StateGoal is a helper class that uses the state
15 # to determine the function, function range, and function nominal
16 # automatically.
17 state = 'storage.HQ.H'
18 # One goal can introduce a single or two constraints (min and/or max). Our
19 # target water level range is 0.43 - 0.44. We might not always be able to
20 # realize this, but we want to try.
21 target_min = 0.43
22 target_max = 0.44
23

24 # Because we want to satisfy our water level target first, this has a
25 # higher priority (=lower number).
26 priority = 1

We also want to save energy, so we define a goal to minimize the integral of Q_pump. This goal has a lower priority
than the water level range goal. This goal does not use a helper class:

29 class MinimizeQpumpGoal(Goal):
30 # This goal does not use a helper class, so we have to define the function
31 # method, range and nominal explicitly. We do not specify a target_min or
32 # target_max in this class, so the goal programming mixin will try to
33 # minimize the expression returned by the function method.
34 def function(self, optimization_problem, ensemble_member):
35 return optimization_problem.integral('Q_pump')
36

37 # The nominal is used to scale the value returned by
38 # the function method so that the value is on the order of 1.
39 function_nominal = 100.0
40 # The lower the number returned by this function, the higher the priority.
41 priority = 2
42 # The penalty variable is taken to the order'th power.
43 order = 1

We add a third goal minimizing the changes in‘‘Q_pump‘‘, and give it the least priority. This goal smooths out the
operation of the pump so that it changes state as few times as possible. To get an idea of what the pump would have
done without this goal, see Mixed Integer: Observations. The order of this goal must be 2, so that it penalizes both
positive and negative derivatives. Order of 2 is the default, but we include it here explicitly for the sake of clarity.
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46 class MinimizeChangeInQpumpGoal(Goal):
47 # To reduce pump power cycles, we add a third goal to minimize changes in
48 # Q_pump. This will be passed into the optimization problem as a path goal
49 # because it is an an individual goal that should be applied at every time
50 # step.
51 def function(self, optimization_problem, ensemble_member):
52 return optimization_problem.der('Q_pump')
53 function_nominal = 5.0
54 priority = 3
55 # Default order is 2, but we want to be explicit
56 order = 2

Optimization Problem

Next, we construct the class by declaring it and inheriting the desired parent classes.

59 class Example(GoalProgrammingMixin, CSVMixin, ModelicaMixin,
60 CollocatedIntegratedOptimizationProblem):

Constraints can be declared by declaring the path_constraints() method. Path constraints are constraints that
are applied every timestep. To set a constraint at an individual timestep, define it inside the constraints()method.

The “orifice” requires special constraints to be set in order to work. They are implemented below in the
path_constraints() method. Other parent classes also declare this method, so we call the super() method
so that we don’t overwrite their behaviour.

64 def path_constraints(self, ensemble_member):
65 # We want to add a few hard constraints to our problem. The goal
66 # programming mixin however also generates constraints (and objectives)
67 # from on our goals, so we have to call super() here.
68 constraints = super().path_constraints(ensemble_member)
69

70 # Release through orifice downhill only. This constraint enforces the
71 # fact that water only flows downhill
72 constraints.append((self.state('Q_orifice') +
73 (1 - self.state('is_downhill')) * 10, 0.0, 10.0))
74

75 # Make sure is_downhill is true only when the sea is lower than the
76 # water level in the storage.
77 M = 2 # The so-called "big-M"
78 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') -
79 (1 - self.state('is_downhill')) * M, -np.inf, 0.0))
80 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') +
81 self.state('is_downhill') * M, 0.0, np.inf))
82

83 # Orifice flow constraint. Uses the equation:
84 # Q(HUp, HDown, d) = width * C * d * (2 * g * (HUp - HDown)) ^ 0.5
85 # Note that this equation is only valid for orifices that are submerged
86 # units: description:
87 w = 3.0 # m width of orifice
88 d = 0.8 # m hight of orifice
89 C = 1.0 # none orifice constant
90 g = 9.8 # m/s^2 gravitational acceleration
91 constraints.append(
92 (((self.state('Q_orifice') / (w * C * d)) ** 2) / (2 * g) +
93 self.state('orifice.HQDown.H') - self.state('orifice.HQUp.H') -

(continues on next page)
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94 M * (1 - self.state('is_downhill')),
95 -np.inf, 0.0))
96

97 return constraints

Now we pass in the goals. There are path goals and normal goals, so we have to pass them in using separate methods.
A path goal is a specific kind of goal that applies to a particular variable at an individual time step, but that we want to
set for all the timesteps.

Non-path goals are more general goals that are not iteratively applied at every timestep. We use the goals() method
to pass a list of these goals to the optimizer.

99 def goals(self):
100 return [MinimizeQpumpGoal()]

For the goals that want to apply our goals to every timestep, so we use the path_goals() method. This is a method
that returns a list of the path goals we defined above. Note that with path goals, each timestep is implemented as an
independant goal- if we cannot satisfy our min/max on time step A, it will not affect our desire to satisfy the goal at
time step B. Goals that inherit StateGoal are always path goals and must always be initialized with the parameter
self.

102 def path_goals(self):
103 # Sorting goals on priority is done in the goal programming mixin. We
104 # do not have to worry about order here.
105 return [WaterLevelRangeGoal(self), MinimizeChangeInQpumpGoal()]

If all we cared about were the results, we could end our class declaration here. However, it is usually helpful to track
how the solution changes after optimizing each priority level. To track these changes, we need to add three methods.

The method pre() is already defined in RTC-Tools, but we would like to add a line to it to create a variable for
storing intermediate results. To do this, we declare a new pre() method, call super().pre() to ensure that the
original method runs unmodified, and add in a variable declaration to store our list of intermediate results:

107 def pre(self):
108 # Call super() class to not overwrite default behaviour
109 super().pre()
110 # We keep track of our intermediate results, so that we can print some
111 # information about the progress of goals at the end of our run.
112 self.intermediate_results = []

Next, we define the priority_completed() method to inspect and summarize the results. These are appended
to our intermediate results variable after each priority is completed.

114 def priority_completed(self, priority):
115 # We want to show that the results of our highest priority goal (water
116 # level) are remembered. The other information we want to see is how our
117 # lower priority goal (Q_pump) progresses. We can write some code that
118 # sumerizes the results and stores it.
119

120 # A little bit of tolerance when checking for acceptance, because
121 # strictly speaking 0.4299... is smaller than 0.43.
122 _min = 0.43 - 1e-4
123 _max = 0.44 + 1e-4
124

125 results = self.extract_results()
126 n_level_satisfied = sum(

(continues on next page)
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127 1 for x in results['storage.HQ.H'] if _min <= x <= _max)
128 q_pump_integral = sum(results['Q_pump'])
129 q_pump_sum_changes = np.sum(np.diff(results['Q_pump'])**2)
130 self.intermediate_results.append(
131 (priority, n_level_satisfied, q_pump_integral, q_pump_sum_changes))

We want some way to output our intermediate results. This is accomplished using the post() method. Again, we
nedd to call the super() method to avoid overwiting the internal method.

133 def post(self):
134 # Call super() class to not overwrite default behaviour
135 super().post()
136 for priority, n_level_satisfied, q_pump_integral, q_pump_sum_changes \
137 in self.intermediate_results:
138 print('\nAfter finishing goals of priority {}:'.format(priority))
139 print('Level goal satisfied at {} of {} time steps'.format(
140 n_level_satisfied, len(self.times())))
141 print('Integral of Q_pump = {:.2f}'.format(q_pump_integral))
142 print('Sum of squares of changes in Q_pump: {:.2f}'.format(q_pump_sum_

→˓changes))

Finally, we want to apply some additional configuration, reducing the amount of information the solver outputs:

145 def solver_options(self):
146 options = super().solver_options()
147 solver = options['solver']
148 options[solver]['print_level'] = 1
149 return options

Run the Optimization Problem

To make our script run, at the bottom of our file we just have to call the run_optimization_problem() method
we imported on the optimization problem class we just created.

153 run_optimization_problem(Example)

The Whole Script

All together, the whole example script is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem
5 from rtctools.optimization.csv_mixin import CSVMixin
6 from rtctools.optimization.goal_programming_mixin \
7 import Goal, GoalProgrammingMixin, StateGoal
8 from rtctools.optimization.modelica_mixin import ModelicaMixin
9 from rtctools.util import run_optimization_problem

10

11

12 class WaterLevelRangeGoal(StateGoal):
13 # Applying a state goal to every time step is easily done by defining a goal

(continues on next page)
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14 # that inherits StateGoal. StateGoal is a helper class that uses the state
15 # to determine the function, function range, and function nominal
16 # automatically.
17 state = 'storage.HQ.H'
18 # One goal can introduce a single or two constraints (min and/or max). Our
19 # target water level range is 0.43 - 0.44. We might not always be able to
20 # realize this, but we want to try.
21 target_min = 0.43
22 target_max = 0.44
23

24 # Because we want to satisfy our water level target first, this has a
25 # higher priority (=lower number).
26 priority = 1
27

28

29 class MinimizeQpumpGoal(Goal):
30 # This goal does not use a helper class, so we have to define the function
31 # method, range and nominal explicitly. We do not specify a target_min or
32 # target_max in this class, so the goal programming mixin will try to
33 # minimize the expression returned by the function method.
34 def function(self, optimization_problem, ensemble_member):
35 return optimization_problem.integral('Q_pump')
36

37 # The nominal is used to scale the value returned by
38 # the function method so that the value is on the order of 1.
39 function_nominal = 100.0
40 # The lower the number returned by this function, the higher the priority.
41 priority = 2
42 # The penalty variable is taken to the order'th power.
43 order = 1
44

45

46 class MinimizeChangeInQpumpGoal(Goal):
47 # To reduce pump power cycles, we add a third goal to minimize changes in
48 # Q_pump. This will be passed into the optimization problem as a path goal
49 # because it is an an individual goal that should be applied at every time
50 # step.
51 def function(self, optimization_problem, ensemble_member):
52 return optimization_problem.der('Q_pump')
53 function_nominal = 5.0
54 priority = 3
55 # Default order is 2, but we want to be explicit
56 order = 2
57

58

59 class Example(GoalProgrammingMixin, CSVMixin, ModelicaMixin,
60 CollocatedIntegratedOptimizationProblem):
61 """
62 An introductory example to goal programming in RCT-Tools
63 """
64 def path_constraints(self, ensemble_member):
65 # We want to add a few hard constraints to our problem. The goal
66 # programming mixin however also generates constraints (and objectives)
67 # from on our goals, so we have to call super() here.
68 constraints = super().path_constraints(ensemble_member)
69

70 # Release through orifice downhill only. This constraint enforces the
(continues on next page)
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71 # fact that water only flows downhill
72 constraints.append((self.state('Q_orifice') +
73 (1 - self.state('is_downhill')) * 10, 0.0, 10.0))
74

75 # Make sure is_downhill is true only when the sea is lower than the
76 # water level in the storage.
77 M = 2 # The so-called "big-M"
78 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') -
79 (1 - self.state('is_downhill')) * M, -np.inf, 0.0))
80 constraints.append((self.state('H_sea') - self.state('storage.HQ.H') +
81 self.state('is_downhill') * M, 0.0, np.inf))
82

83 # Orifice flow constraint. Uses the equation:
84 # Q(HUp, HDown, d) = width * C * d * (2 * g * (HUp - HDown)) ^ 0.5
85 # Note that this equation is only valid for orifices that are submerged
86 # units: description:
87 w = 3.0 # m width of orifice
88 d = 0.8 # m hight of orifice
89 C = 1.0 # none orifice constant
90 g = 9.8 # m/s^2 gravitational acceleration
91 constraints.append(
92 (((self.state('Q_orifice') / (w * C * d)) ** 2) / (2 * g) +
93 self.state('orifice.HQDown.H') - self.state('orifice.HQUp.H') -
94 M * (1 - self.state('is_downhill')),
95 -np.inf, 0.0))
96

97 return constraints
98

99 def goals(self):
100 return [MinimizeQpumpGoal()]
101

102 def path_goals(self):
103 # Sorting goals on priority is done in the goal programming mixin. We
104 # do not have to worry about order here.
105 return [WaterLevelRangeGoal(self), MinimizeChangeInQpumpGoal()]
106

107 def pre(self):
108 # Call super() class to not overwrite default behaviour
109 super().pre()
110 # We keep track of our intermediate results, so that we can print some
111 # information about the progress of goals at the end of our run.
112 self.intermediate_results = []
113

114 def priority_completed(self, priority):
115 # We want to show that the results of our highest priority goal (water
116 # level) are remembered. The other information we want to see is how our
117 # lower priority goal (Q_pump) progresses. We can write some code that
118 # sumerizes the results and stores it.
119

120 # A little bit of tolerance when checking for acceptance, because
121 # strictly speaking 0.4299... is smaller than 0.43.
122 _min = 0.43 - 1e-4
123 _max = 0.44 + 1e-4
124

125 results = self.extract_results()
126 n_level_satisfied = sum(
127 1 for x in results['storage.HQ.H'] if _min <= x <= _max)

(continues on next page)
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128 q_pump_integral = sum(results['Q_pump'])
129 q_pump_sum_changes = np.sum(np.diff(results['Q_pump'])**2)
130 self.intermediate_results.append(
131 (priority, n_level_satisfied, q_pump_integral, q_pump_sum_changes))
132

133 def post(self):
134 # Call super() class to not overwrite default behaviour
135 super().post()
136 for priority, n_level_satisfied, q_pump_integral, q_pump_sum_changes \
137 in self.intermediate_results:
138 print('\nAfter finishing goals of priority {}:'.format(priority))
139 print('Level goal satisfied at {} of {} time steps'.format(
140 n_level_satisfied, len(self.times())))
141 print('Integral of Q_pump = {:.2f}'.format(q_pump_integral))
142 print('Sum of squares of changes in Q_pump: {:.2f}'.format(q_pump_sum_

→˓changes))
143

144 # Any solver options can be set here
145 def solver_options(self):
146 options = super().solver_options()
147 solver = options['solver']
148 options[solver]['print_level'] = 1
149 return options
150

151

152 # Run
153 run_optimization_problem(Example)

Running the Optimization Problem

Following the execution of the optimization problem, the post() method should print out the following lines:

After finishing goals of priority 1:
Level goal satisfied at 19 of 21 time steps
Integral of Q_pump = 74.18
Sum of Changes in Q_pump: 7.83

After finishing goals of priority 2:
Level goal satisfied at 19 of 21 time steps
Integral of Q_pump = 60.10
Sum of Changes in Q_pump: 11.70

After finishing goals of priority 3:
Level goal satisfied at 19 of 21 time steps
Integral of Q_pump = 60.10
Sum of Changes in Q_pump: 10.07

As the output indicates, while optimizing for the priority 1 goal, no attempt was made to minimize the integral of
Q_pump. The only objective was to minimize the number of states in violation of the water level goal.

After optimizing for the priority 2 goal, the solver was able to find a solution that reduced the integral of Q_pump
without increasing the number of timesteps where the water level exceeded the limit. However, this solution induced
additional variation into the operation of Q_pump

After optimizing the priority 3 goal, the integral of Q_pump is the same and the level goal has not improved. Without
hurting any higher priority goals, RTC-Tools was able to smooth out the operation of the pump.
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Extracting Results

The results from the run are found in output/timeseries_export.csv. Any CSV-reading software can im-
port it, but this is how results can be plotted using the python library matplotlib:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime

data_path = '../../../examples/goal_programming/output/timeseries_export.csv'
delimiter = ','

# Import Data
ncols = len(np.genfromtxt(data_path, max_rows=1, delimiter=delimiter))
datefunc = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
results = np.genfromtxt(data_path, converters={0: datefunc}, delimiter=delimiter,

dtype='object' + ',float' * (ncols - 1), names=True,
→˓encoding=None)[1:]

# Generate Plot
n_subplots = 3
f, axarr = plt.subplots(n_subplots, sharex=True, figsize=(8, 3 * n_subplots))
axarr[0].set_title('Water Level and Discharge')

# Upper subplot
axarr[0].set_ylabel('Water Level [m]')
axarr[0].plot(results['time'], results['storage_level'], label='Storage',

linewidth=2, color='b')
axarr[0].plot(results['time'], results['sea_level'], label='Sea',

linewidth=2, color='m')

# Middle subplot
axarr[1].set_ylabel('Water Level [m]')
axarr[1].plot(results['time'], results['storage_level'], label='Storage',

linewidth=2, color='b')
axarr[1].plot(results['time'], 0.44 * np.ones_like(results['time']), label='Storage
→˓Max',

linewidth=2, color='r', linestyle='--')
axarr[1].plot(results['time'], 0.43 * np.ones_like(results['time']), label='Storage
→˓Min',

linewidth=2, color='g', linestyle='--')

# Lower Subplot
axarr[2].set_ylabel('Flow Rate [m3/s]')
axarr[2].plot(results['time'], results['Q_orifice'], label='Orifice',

linewidth=2, color='g')
axarr[2].plot(results['time'], results['Q_pump'], label='Pump',

linewidth=2, color='r')
axarr[2].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
f.autofmt_xdate()

# Shrink each axis by 20% and put a legend to the right of the axis
for i in range(n_subplots):

box = axarr[i].get_position()
axarr[i].set_position([box.x0, box.y0, box.width * 0.8, box.height])

(continues on next page)
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axarr[i].legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)

plt.autoscale(enable=True, axis='x', tight=True)

# Output Plot
plt.show()

Using Lookup Tables

Note: This example focuses on how to implement non-linear storage elements in RTC-Tools using lookup tables. It
assumes basic exposure to RTC-Tools. If you are a first-time user of RTC-Tools, see Filling a Reservoir.

This example also uses goal programming in the formulation. If you are unfamiliar with goal programming, please
see Goal Programming: Defining Multiple Objectives.

The Model

Note: This example uses the same hydraulic model as the basic example. For a detalied explaination of the hydraulic
model, see Filling a Reservoir.

In OpenModelica Connection Editor, the model looks like this:

In text mode, the Modelica model is as follows (with annotation statements removed):

1 model Example
2 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Inflow inflow;
3 Deltares.ChannelFlow.SimpleRouting.Storage.Storage storage(V(nominal=4e5, min=2e5,

→˓max=6e5)); (continues on next page)
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4 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Terminal outfall;
5 input Modelica.SIunits.VolumeFlowRate Q_in(fixed = true);
6 input Modelica.SIunits.VolumeFlowRate Q_release(fixed = false, min = 0.0, max = 10.

→˓0);
7 equation
8 connect(inflow.QOut, storage.QIn);
9 connect(storage.QOut, outfall.QIn);

10 storage.Q_release = Q_release;
11 inflow.Q = Q_in;
12 end Example;

The Optimization Problem

The python script consists of the following blocks:

• Import of packages

• Declaration of Goals

• Declaration of the optimization problem class

– Constructor

– Declaration of a pre() method

– Specification of Goals

– Declaration of a priority_completed() method

– Declaration of a post() method

– Additional configuration of the solver

• A run statement

Importing Packages

For this example, the import block is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem
5 from rtctools.optimization.csv_lookup_table_mixin import CSVLookupTableMixin
6 from rtctools.optimization.csv_mixin import CSVMixin
7 from rtctools.optimization.goal_programming_mixin \
8 import GoalProgrammingMixin, StateGoal
9 from rtctools.optimization.modelica_mixin import ModelicaMixin

Declaring Goals

Goals are defined as classes that inherit the Goal parent class. The components of goals can be found in Multi-
objective optimization. In this example, we use the helper goal class, StateGoal.
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First, we have a high priority goal to keep the water volume within a minimum and maximum. We use a water volume
goal instead of a water level goal when the volume-storage relation of the storage element is non-linear. The volume
of water in the storage element behaves linearly, while the water level does not.

However, goals are usually defined in the form of water level goals. We will convert the water level goals into volume
goals within the optimization problem class, so we define the __init__() method so we can pass the values of the
goals in later. We call the super() method to avoid overwriting the __init__() method of the parent class.

13 class WaterVolumeRangeGoal(StateGoal):
14 # We want to add a water volume range goal to our optimization. However, at
15 # the time of defining this goal we still do not know what the value of the
16 # min and max are. We add an __init__() method so that the values of these
17 # goals can be defined when the optimization problem class instantiates
18 # this goal.
19 def __init__(self, optimization_problem):
20 # Assign V_min and V_max the the target range
21 self.target_min = optimization_problem.get_timeseries('V_min')
22 self.target_max = optimization_problem.get_timeseries('V_max')
23 super().__init__(optimization_problem)
24 state = 'storage.V'
25 priority = 1

We also want to save energy, so we define a goal to minimize Q_release. This goal has a lower priority.

28 class MinimizeQreleaseGoal(StateGoal):
29 # GoalProgrammingMixin will try to minimize the following state:
30 state = 'Q_release'
31 # The lower the number returned by this function, the higher the priority.
32 priority = 2
33 # The penalty variable is taken to the order'th power.
34 order = 1

Optimization Problem

Next, we construct the class by declaring it and inheriting the desired parent classes.

37 class Example(GoalProgrammingMixin, CSVLookupTableMixin, CSVMixin,
38 ModelicaMixin, CollocatedIntegratedOptimizationProblem):

The method pre() is already defined in RTC-Tools, but we would like to add a line to it to create a variable for
storing intermediate results. To do this, we declare a new pre() method, call super().pre() to ensure that the
original method runs unmodified, and add in a variable declaration to store our list of intermediate results.

We also want to convert our water level rane goal into a water volume range goal. We can access the spline function
describing the water level-storage relation using the lookup_table() method. We cache the functions for con-
venience. The lookup_storage_V() method can convert timeseries objects, and we save the water volume goal
bounds as timeseries.

44 def pre(self):
45 super().pre()
46 # Empty list for storing intermediate_results
47 self.intermediate_results = []
48

49 # Cache lookup tables for convenience and legibility
50 _lookup_tables = self.lookup_tables(ensemble_member=0)
51 self.lookup_storage_V = _lookup_tables['storage_V']

(continues on next page)
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52

53 # Non-varrying goals can be implemented as a timeseries like this:
54 self.set_timeseries('H_min', np.ones_like(self.times()) * 0.44, output=False)
55

56 # Q_in is a varying input and is defined in timeseries_import.csv
57 # However, if we set it again here, it will be added to the output file
58 self.set_timeseries('Q_in', self.get_timeseries('Q_in'))
59

60 # Convert our water level constraints into volume constraints
61 self.set_timeseries('V_max',
62 self.lookup_storage_V(self.get_timeseries('H_max')))
63 self.set_timeseries('V_min',
64 self.lookup_storage_V(self.get_timeseries('H_min')))

Notice that H_max was not defined in pre(). This is because it was defined as a timeseries import. We access timeseries
using get_timeseries() and store them using set_timeseries(). Once a timeseries is set, we can access it later. In
addition, all timeseries that are set are automatically included in the output file. You can find more information on
timeseries here Basics.

Now we pass in the goals. We want to apply our goals to every timestep, so we use the path_goals() method.
This is a method that returns a list of the goals we defined above. The WaterVolumeRangeGoal needs to be
instantiated with the new water volume timeseries we just defined.

66 def path_goals(self):
67 g = []
68 g.append(WaterVolumeRangeGoal(self))
69 g.append(MinimizeQreleaseGoal(self))
70 return g

If all we cared about were the results, we could end our class declaration here. However, it is usually helpful to track
how the solution changes after optimizing each priority level. To track these changes, we need to add three methods.

We define the priority_completed() method to inspect and summerize the results. These are appended to our
intermediate results variable after each priority is completed.

75 def priority_completed(self, priority):
76 results = self.extract_results()
77 self.set_timeseries('storage_V', results['storage.V'])
78

79 _max = self.get_timeseries('V_max').values
80 _min = self.get_timeseries('V_min').values
81 storage_V = self.get_timeseries('storage_V').values
82

83 # A little bit of tolerance when checking for acceptance.
84 tol = 10
85 _max += tol
86 _min -= tol
87 n_level_satisfied = sum(
88 np.logical_and(_min <= storage_V, storage_V <= _max))
89 q_release_integral = sum(results['Q_release'])
90 self.intermediate_results.append(
91 (priority, n_level_satisfied, q_release_integral))

We output our intermediate results using the post() method. Again, we nedd to call the super() method to avoid
overwiting the internal method.
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93 def post(self):
94 # Call super() class to not overwrite default behaviour
95 super().post()
96 for priority, n_level_satisfied, q_release_integral in self.intermediate_

→˓results:
97 print("\nAfter finishing goals of priority {}:".format(priority))
98 print("Volume goal satisfied at {} of {} time steps".format(
99 n_level_satisfied, len(self.times())))

100 print("Integral of Q_release = {:.2f}".format(q_release_integral))

Finally, we want to apply some additional configuration, reducing the amount of information the solver outputs:

103 def solver_options(self):
104 options = super().solver_options()
105 solver = options['solver']
106 options[solver]['print_level'] = 1
107 return options

Run the Optimization Problem

To make our script run, at the bottom of our file we just have to call the run_optimization_problem() method
we imported on the optimization problem class we just created.

111 run_optimization_problem(Example)

The Whole Script

All together, the whole example script is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem
5 from rtctools.optimization.csv_lookup_table_mixin import CSVLookupTableMixin
6 from rtctools.optimization.csv_mixin import CSVMixin
7 from rtctools.optimization.goal_programming_mixin \
8 import GoalProgrammingMixin, StateGoal
9 from rtctools.optimization.modelica_mixin import ModelicaMixin

10 from rtctools.util import run_optimization_problem
11

12

13 class WaterVolumeRangeGoal(StateGoal):
14 # We want to add a water volume range goal to our optimization. However, at
15 # the time of defining this goal we still do not know what the value of the
16 # min and max are. We add an __init__() method so that the values of these
17 # goals can be defined when the optimization problem class instantiates
18 # this goal.
19 def __init__(self, optimization_problem):
20 # Assign V_min and V_max the the target range
21 self.target_min = optimization_problem.get_timeseries('V_min')
22 self.target_max = optimization_problem.get_timeseries('V_max')
23 super().__init__(optimization_problem)
24 state = 'storage.V'
25 priority = 1

(continues on next page)
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26

27

28 class MinimizeQreleaseGoal(StateGoal):
29 # GoalProgrammingMixin will try to minimize the following state:
30 state = 'Q_release'
31 # The lower the number returned by this function, the higher the priority.
32 priority = 2
33 # The penalty variable is taken to the order'th power.
34 order = 1
35

36

37 class Example(GoalProgrammingMixin, CSVLookupTableMixin, CSVMixin,
38 ModelicaMixin, CollocatedIntegratedOptimizationProblem):
39 """
40 An extention of the goal programming example that shows how to incorporate
41 non-linear storage elements in the model.
42 """
43

44 def pre(self):
45 super().pre()
46 # Empty list for storing intermediate_results
47 self.intermediate_results = []
48

49 # Cache lookup tables for convenience and legibility
50 _lookup_tables = self.lookup_tables(ensemble_member=0)
51 self.lookup_storage_V = _lookup_tables['storage_V']
52

53 # Non-varrying goals can be implemented as a timeseries like this:
54 self.set_timeseries('H_min', np.ones_like(self.times()) * 0.44, output=False)
55

56 # Q_in is a varying input and is defined in timeseries_import.csv
57 # However, if we set it again here, it will be added to the output file
58 self.set_timeseries('Q_in', self.get_timeseries('Q_in'))
59

60 # Convert our water level constraints into volume constraints
61 self.set_timeseries('V_max',
62 self.lookup_storage_V(self.get_timeseries('H_max')))
63 self.set_timeseries('V_min',
64 self.lookup_storage_V(self.get_timeseries('H_min')))
65

66 def path_goals(self):
67 g = []
68 g.append(WaterVolumeRangeGoal(self))
69 g.append(MinimizeQreleaseGoal(self))
70 return g
71

72 # We want to print some information about our goal programming problem. We
73 # store the useful numbers temporarily, and print information at the end of
74 # our run (see post() method below).
75 def priority_completed(self, priority):
76 results = self.extract_results()
77 self.set_timeseries('storage_V', results['storage.V'])
78

79 _max = self.get_timeseries('V_max').values
80 _min = self.get_timeseries('V_min').values
81 storage_V = self.get_timeseries('storage_V').values
82

(continues on next page)
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83 # A little bit of tolerance when checking for acceptance.
84 tol = 10
85 _max += tol
86 _min -= tol
87 n_level_satisfied = sum(
88 np.logical_and(_min <= storage_V, storage_V <= _max))
89 q_release_integral = sum(results['Q_release'])
90 self.intermediate_results.append(
91 (priority, n_level_satisfied, q_release_integral))
92

93 def post(self):
94 # Call super() class to not overwrite default behaviour
95 super().post()
96 for priority, n_level_satisfied, q_release_integral in self.intermediate_

→˓results:
97 print("\nAfter finishing goals of priority {}:".format(priority))
98 print("Volume goal satisfied at {} of {} time steps".format(
99 n_level_satisfied, len(self.times())))

100 print("Integral of Q_release = {:.2f}".format(q_release_integral))
101

102 # Any solver options can be set here
103 def solver_options(self):
104 options = super().solver_options()
105 solver = options['solver']
106 options[solver]['print_level'] = 1
107 return options
108

109

110 # Run
111 run_optimization_problem(Example)

Running the Optimization Problem

Following the execution of the optimization problem, the post() method should print out the following lines:

After finishing goals of priority 1:
Volume goal satisfied at 12 of 12 time steps
Integral of Q_release = 42.69

After finishing goals of priority 2:
Volume goal satisfied at 12 of 12 time steps
Integral of Q_release = 42.58

As the output indicates, while optimizing for the priority 1 goal, no attempt was made to minimize the integral of
Q_release. The only objective was to minimize the number of states in violation of the water level goal.

After optimizing for the priority 2 goal, the solver was able to find a solution that reduced the integral of Q_release
without increasing the number of timesteps where the water level exceded the limit.

Extracting Results

The results from the run are found in output/timeseries_export.csv. Any CSV-reading software can im-
port it, but this is how results can be plotted using the python library matplotlib:
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import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime

data_path = '../../../examples/lookup_table/output/timeseries_export.csv'
delimiter = ','

# Import Data
ncols = len(np.genfromtxt(data_path, max_rows=1, delimiter=delimiter))
datefunc = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
results = np.genfromtxt(data_path, converters={0: datefunc}, delimiter=delimiter,

dtype='object' + ',float' * (ncols - 1), names=True,
→˓encoding=None)[1:]

# Generate Plot
n_subplots = 2
f, axarr = plt.subplots(n_subplots, sharex=True, figsize=(8, 3 * n_subplots))
axarr[0].set_title('Water Volume and Discharge')
f.autofmt_xdate()

# Upper subplot
axarr[0].set_ylabel('Water Volume [m3]')
axarr[0].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
axarr[0].plot(results['time'], results['storage_V'], label='Storage',

linewidth=2, color='b')
axarr[0].plot(results['time'], results['V_max'], label='Storage Max',

linewidth=2, color='r', linestyle='--')
axarr[0].plot(results['time'], results['V_min'], label='Storage Min',

linewidth=2, color='g', linestyle='--')

# Lower Subplot
axarr[1].set_ylabel('Flow Rate [m3/s]')
axarr[1].plot(results['time'], results['Q_in'], label='Inflow',

linewidth=2, color='g')
axarr[1].plot(results['time'], results['Q_release'], label='Release',

linewidth=2, color='r')

# Shrink each axis by 20% and put a legend to the right of the axis
for i in range(n_subplots):

box = axarr[i].get_position()
axarr[i].set_position([box.x0, box.y0, box.width * 0.8, box.height])
axarr[i].legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)

plt.autoscale(enable=True, axis='x', tight=True)

# Output Plot
plt.show()

Using an Ensemble Forecast

Note: This example is an extension of Using Lookup Tables. It assumes prior knowledge of goal programming and
the lookup tables components of RTC-Tools. If you are a first-time user of RTC-Tools, see Filling a Reservoir.

56 Chapter 1. Contents



RTC-Tools Documentation, Release 2.2.0b1+113.ge0e434a

Then biggest change to RTC-Tools when using an ensemble is the structure of the directory. The folder <examples
directory>\ensemble contains a complete RTC-Tools ensemble optimization problem. An RTC-Tools ensem-
ble directory has the following structure:

• model: This folder contains the Modelica model. The Modelica model contains the physics of the RTC-Tools
model.

• src: This folder contains a Python file. This file contains the configuration of the model and is used to run the
model.

• input: This folder contains the model input data pertaining to each ensemble member:

– ensemble.csv: a file where the names and probabilities of the ensemble members are defined

– forecast1

* the file timeseries_import.csv

* the file initial_state.csv

– forecast2

* timeseries_import.csv

* initial_state.csv

– . . .

• output: The folder where the output is saved:

– forecast1

* timeseries_export.csv

– forecast2

* timeseries_export.csv

– . . .

The Model

Note: This example uses the same hydraulic model as the basic example. For a detailed explanation of the hydraulic
model, see Filling a Reservoir.

In OpenModelica Connection Editor, the model looks like this:
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In text mode, the Modelica model is as follows (with annotation statements removed):

1 model Example
2 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Inflow inflow;
3 Deltares.ChannelFlow.SimpleRouting.Storage.Storage storage(V(nominal=4e5, min=2e5,

→˓max=6e5));
4 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Terminal outfall;
5 input Modelica.SIunits.VolumeFlowRate Q_in(fixed = true);
6 input Modelica.SIunits.VolumeFlowRate Q_release(fixed = false, min = 0.0, max = 6.

→˓0);
7 equation
8 connect(inflow.QOut, storage.QIn);
9 connect(storage.QOut, outfall.QIn);

10 storage.Q_release = Q_release;
11 inflow.Q = Q_in;
12 end Example;

The Optimization Problem

The python script consists of the following blocks:

• Import of packages

• Declaration of Goals

• Declaration of the optimization problem class

– Constructor

– Set csv_ensemble_mode = True

– Declaration of a pre() method

– Specification of Goals

– Declaration of a priority_completed() method

58 Chapter 1. Contents



RTC-Tools Documentation, Release 2.2.0b1+113.ge0e434a

– Declaration of a post() method

– Additional configuration of the solver

• A run statement

Importing Packages

For this example, the import block is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem
5 from rtctools.optimization.control_tree_mixin import ControlTreeMixin
6 from rtctools.optimization.csv_lookup_table_mixin import CSVLookupTableMixin
7 from rtctools.optimization.csv_mixin import CSVMixin
8 from rtctools.optimization.goal_programming_mixin \
9 import GoalProgrammingMixin, StateGoal

10 from rtctools.optimization.modelica_mixin import ModelicaMixin

Declaring Goals

First, we have a high priority goal to keep the water volume within a minimum and maximum.

14 class WaterVolumeRangeGoal(StateGoal):
15 def __init__(self, optimization_problem):
16 # Assign V_min and V_max the the target range
17 self.target_min = optimization_problem.get_timeseries('V_min')
18 self.target_max = optimization_problem.get_timeseries('V_max')
19 super().__init__(optimization_problem)
20 state = 'storage.V'
21 priority = 1

We also want to save energy, so we define a goal to minimize Q_release. This goal has a lower priority.

24 class MinimizeQreleaseGoal(StateGoal):
25 # GoalProgrammingMixin will try to minimize the following state
26 state = 'Q_release'
27 # The lower the number returned by this function, the higher the priority.
28 priority = 2
29 # The penalty variable is taken to the order'th power.
30 order = 1

Optimization Problem

Next, we construct the class by declaring it and inheriting the desired parent classes.

33 class Example(GoalProgrammingMixin, CSVMixin, CSVLookupTableMixin, ModelicaMixin,
34 ControlTreeMixin, CollocatedIntegratedOptimizationProblem):

We turn on ensemble mode by setting csv_ensemble_mode = True:
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49 ensemble_member: [] for ensemble_member in range(self.ensemble_size)}
50

The method pre() is already defined in RTC-Tools, but we would like to add a line to it to create a variable for storing
intermediate results. To do this, we declare a new pre() method, call super().pre() to ensure that the original
method runs unmodified, and add in a variable declaration to store our list of intermediate results. This variable is a
dict, reflecting the need to store results from multiple ensemble.

Because the timeseries we set will be the same for both ensemble members, we also make sure that the timeseries we
set are set for both ensemble members using for loops.

42 def pre(self):
43 # Do the standard preprocessing
44 super().pre()
45

46 # Create a dict of empty lists for storing intermediate results from
47 # each ensemble
48 self.intermediate_results = {
49 ensemble_member: [] for ensemble_member in range(self.ensemble_size)}
50

51 # Cache lookup tables for convenience and code legibility
52 _lookup_tables = self.lookup_tables(ensemble_member=0)
53 self.lookup_storage_V = _lookup_tables['storage_V']
54

55 # Non-varying goals can be implemented as a timeseries
56 for e_m in range(self.ensemble_size):
57 self.set_timeseries('H_min', np.ones_like(self.times()) * 0.44,
58 ensemble_member=e_m)
59 self.set_timeseries('H_max', np.ones_like(self.times()) * 0.46,
60 ensemble_member=e_m)
61

62 # Q_in is a varying input and is defined in each timeseries_import.csv
63 # However, if we set it again here, it will be added to the output files
64 self.set_timeseries('Q_in',
65 self.get_timeseries('Q_in', ensemble_member=e_m),
66 ensemble_member=e_m)
67

68 # Convert our water level goals into volume goals
69 self.set_timeseries('V_max',
70 self.lookup_storage_V(self.get_timeseries('H_max')),
71 ensemble_member=e_m)
72 self.set_timeseries('V_min',
73 self.lookup_storage_V(self.get_timeseries('H_min')),
74 ensemble_member=e_m)

Now we pass in the goals:

76 def path_goals(self):
77 g = []
78 g.append(WaterVolumeRangeGoal(self))
79 g.append(MinimizeQreleaseGoal(self))
80 return g

In order to better demonstrate the way that ensembles are handled in RTC- Tools, we modify the
control_tree_options() method. The default setting allows the control tree to split at every time, but we
override this method and force it to split at a single timestep. See Observations at the bottom of the page for more
information.
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82 def control_tree_options(self):
83 # We want to modify the control tree options, so we override the default
84 # control_tree_options method. We call super() to get the default options
85 options = super().control_tree_options()
86 # Change the branching_times list to only contain the fifth timestep
87 options['branching_times'] = [self.times()[5]]
88 return options

We define the priority_completed()method. We ensure that it stores the results from both ensemble members.

90 def priority_completed(self, priority):
91 # We want to print some information about our goal programming problem.
92 # We store the useful numbers temporarily, and print information at the
93 # end of our run.
94 for e_m in range(self.ensemble_size):
95 results = self.extract_results(e_m)
96 self.set_timeseries('V_storage', results['storage.V'], ensemble_member=e_

→˓m)
97

98 _max = self.get_timeseries('V_max', ensemble_member=e_m).values
99 _min = self.get_timeseries('V_min', ensemble_member=e_m).values

100 V_storage = self.get_timeseries('V_storage', ensemble_member=e_m).values
101

102 # A little bit of tolerance when checking for acceptance. This
103 # tolerance must be set greater than the tolerance of the solver.
104 tol = 10
105 _max += tol
106 _min -= tol
107 n_level_satisfied = sum(
108 np.logical_and(_min <= V_storage, V_storage <= _max))
109 q_release_integral = sum(results['Q_release'])
110 self.intermediate_results[e_m].append((priority, n_level_satisfied,
111 q_release_integral))

We output our intermediate results using the post() method:

113 def post(self):
114 super().post()
115 for e_m in range(self.ensemble_size):
116 print('\n\nResults for Ensemble Member {}:'.format(e_m))
117 for priority, n_level_satisfied, q_release_integral in \
118 self.intermediate_results[e_m]:
119 print("\nAfter finishing goals of priority {}:".format(priority))
120 print("Level goal satisfied at {} of {} time steps".format(
121 n_level_satisfied, len(self.times())))
122 print("Integral of Q_release = {:.2f}".format(q_release_integral))

Finally, we want to apply some additional configuration, reducing the amount of information the solver outputs:

125 def solver_options(self):
126 options = super().solver_options()
127 # When mumps_scaling is not zero, errors occur. RTC-Tools does its own
128 # scaling, so mumps scaling is not critical. Proprietary HSL solvers
129 # do not exhibit this error.
130 solver = options['solver']
131 options[solver]['mumps_scaling'] = 0
132 options[solver]['print_level'] = 1
133 return options
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Run the Optimization Problem

To make our script run, at the bottom of our file we just have to call the run_optimization_problem() method
we imported on the optimization problem class we just created.

137 run_optimization_problem(Example)

The Whole Script

All together, the whole example script is as follows:

1 import numpy as np
2

3 from rtctools.optimization.collocated_integrated_optimization_problem \
4 import CollocatedIntegratedOptimizationProblem
5 from rtctools.optimization.control_tree_mixin import ControlTreeMixin
6 from rtctools.optimization.csv_lookup_table_mixin import CSVLookupTableMixin
7 from rtctools.optimization.csv_mixin import CSVMixin
8 from rtctools.optimization.goal_programming_mixin \
9 import GoalProgrammingMixin, StateGoal

10 from rtctools.optimization.modelica_mixin import ModelicaMixin
11 from rtctools.util import run_optimization_problem
12

13

14 class WaterVolumeRangeGoal(StateGoal):
15 def __init__(self, optimization_problem):
16 # Assign V_min and V_max the the target range
17 self.target_min = optimization_problem.get_timeseries('V_min')
18 self.target_max = optimization_problem.get_timeseries('V_max')
19 super().__init__(optimization_problem)
20 state = 'storage.V'
21 priority = 1
22

23

24 class MinimizeQreleaseGoal(StateGoal):
25 # GoalProgrammingMixin will try to minimize the following state
26 state = 'Q_release'
27 # The lower the number returned by this function, the higher the priority.
28 priority = 2
29 # The penalty variable is taken to the order'th power.
30 order = 1
31

32

33 class Example(GoalProgrammingMixin, CSVMixin, CSVLookupTableMixin, ModelicaMixin,
34 ControlTreeMixin, CollocatedIntegratedOptimizationProblem):
35 """
36 An extention of the goal programming and lookuptable examples that
37 demonstrates how to work with ensembles.
38 """
39 # Overide default csv_ensemble_mode = False from CSVMixin before calling pre()
40 csv_ensemble_mode = True
41

42 def pre(self):
43 # Do the standard preprocessing
44 super().pre()
45

(continues on next page)
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(continued from previous page)

46 # Create a dict of empty lists for storing intermediate results from
47 # each ensemble
48 self.intermediate_results = {
49 ensemble_member: [] for ensemble_member in range(self.ensemble_size)}
50

51 # Cache lookup tables for convenience and code legibility
52 _lookup_tables = self.lookup_tables(ensemble_member=0)
53 self.lookup_storage_V = _lookup_tables['storage_V']
54

55 # Non-varying goals can be implemented as a timeseries
56 for e_m in range(self.ensemble_size):
57 self.set_timeseries('H_min', np.ones_like(self.times()) * 0.44,
58 ensemble_member=e_m)
59 self.set_timeseries('H_max', np.ones_like(self.times()) * 0.46,
60 ensemble_member=e_m)
61

62 # Q_in is a varying input and is defined in each timeseries_import.csv
63 # However, if we set it again here, it will be added to the output files
64 self.set_timeseries('Q_in',
65 self.get_timeseries('Q_in', ensemble_member=e_m),
66 ensemble_member=e_m)
67

68 # Convert our water level goals into volume goals
69 self.set_timeseries('V_max',
70 self.lookup_storage_V(self.get_timeseries('H_max')),
71 ensemble_member=e_m)
72 self.set_timeseries('V_min',
73 self.lookup_storage_V(self.get_timeseries('H_min')),
74 ensemble_member=e_m)
75

76 def path_goals(self):
77 g = []
78 g.append(WaterVolumeRangeGoal(self))
79 g.append(MinimizeQreleaseGoal(self))
80 return g
81

82 def control_tree_options(self):
83 # We want to modify the control tree options, so we override the default
84 # control_tree_options method. We call super() to get the default options
85 options = super().control_tree_options()
86 # Change the branching_times list to only contain the fifth timestep
87 options['branching_times'] = [self.times()[5]]
88 return options
89

90 def priority_completed(self, priority):
91 # We want to print some information about our goal programming problem.
92 # We store the useful numbers temporarily, and print information at the
93 # end of our run.
94 for e_m in range(self.ensemble_size):
95 results = self.extract_results(e_m)
96 self.set_timeseries('V_storage', results['storage.V'], ensemble_member=e_

→˓m)
97

98 _max = self.get_timeseries('V_max', ensemble_member=e_m).values
99 _min = self.get_timeseries('V_min', ensemble_member=e_m).values

100 V_storage = self.get_timeseries('V_storage', ensemble_member=e_m).values
101

(continues on next page)
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102 # A little bit of tolerance when checking for acceptance. This
103 # tolerance must be set greater than the tolerance of the solver.
104 tol = 10
105 _max += tol
106 _min -= tol
107 n_level_satisfied = sum(
108 np.logical_and(_min <= V_storage, V_storage <= _max))
109 q_release_integral = sum(results['Q_release'])
110 self.intermediate_results[e_m].append((priority, n_level_satisfied,
111 q_release_integral))
112

113 def post(self):
114 super().post()
115 for e_m in range(self.ensemble_size):
116 print('\n\nResults for Ensemble Member {}:'.format(e_m))
117 for priority, n_level_satisfied, q_release_integral in \
118 self.intermediate_results[e_m]:
119 print("\nAfter finishing goals of priority {}:".format(priority))
120 print("Level goal satisfied at {} of {} time steps".format(
121 n_level_satisfied, len(self.times())))
122 print("Integral of Q_release = {:.2f}".format(q_release_integral))
123

124 # Any solver options can be set here
125 def solver_options(self):
126 options = super().solver_options()
127 # When mumps_scaling is not zero, errors occur. RTC-Tools does its own
128 # scaling, so mumps scaling is not critical. Proprietary HSL solvers
129 # do not exhibit this error.
130 solver = options['solver']
131 options[solver]['mumps_scaling'] = 0
132 options[solver]['print_level'] = 1
133 return options
134

135

136 # Run
137 run_optimization_problem(Example)

Running the Optimization Problem

Following the execution of the optimization problem, the post() method should print out the following lines:

Results for Ensemble Member 0:

After finishing goals of priority 1:
Level goal satisfied at 10 of 12 time steps
Integral of Q_release = 17.34

After finishing goals of priority 2:
Level goal satisfied at 9 of 12 time steps
Integral of Q_release = 17.12

Results for Ensemble Member 1:

After finishing goals of priority 1:

(continues on next page)
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Level goal satisfied at 10 of 12 time steps
Integral of Q_release = 20.82

After finishing goals of priority 2:
Level goal satisfied at 9 of 12 time steps
Integral of Q_release = 20.60

This is the same output as the output for Mixed Integer Optimization: Pumps and Orifices, except now the output for
each ensemble is printed.

Extracting Results

The results from the run are found in output/forecast1/timeseries_export.csv and output/
forecast2/timeseries_export.csv. Any CSV-reading software can import it, but this is how results can
be plotted using the python library matplotlib:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime
from pylab import get_cmap

forecast_names = ['forecast1', 'forecast2']

# Import Data
def get_results(forecast_name):

output_dir = '../../../examples/ensemble/output/'
data_path = output_dir + forecast_name + '/timeseries_export.csv'
delimiter = ','
ncols = len(np.genfromtxt(data_path, max_rows=1, delimiter=delimiter))
datefunc = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
return np.genfromtxt(data_path, converters={0: datefunc}, delimiter=delimiter,

dtype='object' + ',float' * (ncols - 1), names=True,
→˓encoding=None)

# Generate Plot
n_subplots = 2
f, axarr = plt.subplots(n_subplots, sharex=True, figsize=(8, 4 * n_subplots))
axarr[0].set_title('Water Volume and Discharge')
cmaps = ['Blues', 'Greens']
shades = [0.5, 0.8]
f.autofmt_xdate()

# Upper Subplot
axarr[0].set_ylabel('Water Volume in Storage [m3]')
axarr[0].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))

# Lower Subplot
axarr[1].set_ylabel('Flow Rate [m3/s]')

# Plot Ensemble Members
for idx, forecast in enumerate(forecast_names):

# Upper Subplot
results = get_results(forecast)
if idx == 0:

(continues on next page)

1.4. Examples 65



RTC-Tools Documentation, Release 2.2.0b1+113.ge0e434a

(continued from previous page)

axarr[0].plot(results['time'], results['V_max'], label='Max',
linewidth=2, color='r', linestyle='--')
axarr[0].plot(results['time'], results['V_min'], label='Min',
linewidth=2, color='g', linestyle='--')

axarr[0].plot(results['time'], results['V_storage'], label=forecast + ':Volume',
linewidth=2, color=get_cmap(cmaps[idx])(shades[1]))

# Lower Subplot
axarr[1].plot(results['time'], results['Q_in'], label='{}:Inflow'.

→˓format(forecast),
linewidth=2, color=get_cmap(cmaps[idx])(shades[0]))

axarr[1].plot(results['time'], results['Q_release'], label='{}:Release'.
→˓format(forecast),

linewidth=2, color=get_cmap(cmaps[idx])(shades[1]))

# Shrink each axis by 30% and put a legend to the right of the axis
for i in range(len(axarr)):

box = axarr[i].get_position()
axarr[i].set_position([box.x0, box.y0, box.width * 0.7, box.height])
axarr[i].legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)

plt.autoscale(enable=True, axis='x', tight=True)

# Output Plot
plt.show()

Observations

Note that in the results plotted above, the control tree follows a single path and does not branch until it arrives at the
first branching time. Up until the branching point, RTC-Tools is making decisions that enhance the flexibility of the
system so that it can respond as ideally as possible to whichever future emerges. In the case of two forecasts, this
means taking a path that falls between the two possible futures. This will cause the water level to diverge from the
ideal levels as time progresses. While this appears to be suboptimal, it is preferable to simply gambling on one of the
forecasts coming true and ignoring the other. Once the branching time is reached, RTC-Tools is allowed to optimize
for each individual branch separately. Immediately, RTC-Tools applies the corrective control needed to get the water
levels into the acceptable range. If the operator simply picks a forecast to use and guesses wrong, the corrective control
will have to be much more drastic and potentially catastrophic.
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Cascading Channels: Modeling Channel Hydraulics

Note: This is a more advanced example that implements multi-objective optimization in RTC-Tools. It also capitalizes
on the homotopy techniques available in RTC-Tools. If you are a first-time user of RTC-Tools, see Filling a Reservoir.

Goal programming is a way to satisfy (sometimes conflicting) goals by ranking the goals by priority. In this example,
we specify two goals. The higher priority goal will be to maintain the water levels in the channels within a desired
band. The lower priority goal will be to extract water to meet a forecasted drinking water demand.

The Model

For this example, water is flowing through a multilevel channel system. The model has three channel sections. There
is an extraction pump at the downstream end of the middle channel. The algorithm will first attempt to maintain water
levels in the channels within the desired water level band. Using the remaining flexibility in the model, the algorithm
will attempt to meet the diurnal demand pattern as best as it can with the extraction pump.

In OpenModelica Connection Editor, the model looks like this:
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In text mode, the Modelica model looks as follows (with annotation statements removed):

1 model Example
2 // Model Elements
3 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge Inflow;
4 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Level DrinkingWaterPlant(H = 10.);
5 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Level Level(H = 0.);
6 Deltares.ChannelFlow.Hydraulic.Branches.HomotopicLinear LowerChannel(H(each max = 1.

→˓0), H_b_down = -2.0, H_b_up = -1.5, friction_coefficient = 10., length = 2000.,
→˓theta = theta, uniform_nominal_depth = 1.75, width_down = 10., width_up = 10.);

7 Deltares.ChannelFlow.Hydraulic.Branches.HomotopicLinear MiddleChannel(H(each max =
→˓1.5), H_b_down = -1.5, H_b_up = -1.0, friction_coefficient = 10., length = 2000.,
→˓theta = theta, uniform_nominal_depth = 1.75, width_down = 10., width_up = 10.);

8 Deltares.ChannelFlow.Hydraulic.Branches.HomotopicLinear UpperChannel(H(each max = 2.
→˓0), H_b_down = -1.0, H_b_up = -0.5, friction_coefficient = 10., length = 2000.,
→˓theta = theta, uniform_nominal_depth = 1.75, width_down = 10., width_up = 10.);

9 Deltares.ChannelFlow.Hydraulic.Structures.Pump DrinkingWaterExtractionPump;
10 Deltares.ChannelFlow.Hydraulic.Structures.Pump LowerControlStructure;
11 Deltares.ChannelFlow.Hydraulic.Structures.Pump UpperControlStructure;
12 // Parameters
13 parameter Real theta;
14 // Inputs
15 input Real Inflow_Q(fixed = true) = Inflow.Q;
16 input Real UpperControlStructure_Q(fixed = false, min = 0., max = 4.) =

→˓UpperControlStructure.Q;
17 input Real LowerControlStructure_Q(fixed = false, min = 0., max = 4.) =

→˓LowerControlStructure.Q;
18 input Real DrinkingWaterExtractionPump_Q(fixed = false, min = 0., max = 2.) =

→˓DrinkingWaterExtractionPump.Q;
(continues on next page)

68 Chapter 1. Contents



RTC-Tools Documentation, Release 2.2.0b1+113.ge0e434a

(continued from previous page)

19 equation
20 connect(DrinkingWaterExtractionPump.HQDown, DrinkingWaterPlant.HQ);
21 connect(Inflow.HQ, UpperChannel.HQUp);
22 connect(LowerChannel.HQDown, Level.HQ);
23 connect(LowerControlStructure.HQDown, LowerChannel.HQUp);
24 connect(MiddleChannel.HQDown, DrinkingWaterExtractionPump.HQUp);
25 connect(MiddleChannel.HQDown, LowerControlStructure.HQUp);
26 connect(UpperChannel.HQDown, UpperControlStructure.HQUp);
27 connect(UpperControlStructure.HQDown, MiddleChannel.HQUp);
28 end Example;

The Optimization Problem

The python script consists of the following blocks:

• Import of packages

• Declaration of Goals

• Declaration of the optimization problem class

– Constructor

– Implementation of pre() method

– Implementation of path_goals() method

• A run statement

Goals

In this model, we define two generic StateGoal subclasses:

13 class RangeGoal(StateGoal):
14 def __init__(self, opt_prob, state, priority):
15 self.state = state
16 self.target_min = opt_prob.get_timeseries(state + "_min")
17 self.target_max = opt_prob.get_timeseries(state + "_max")
18 self.violation_timeseries_id = state + "_target_violation"
19 self.function_value_timeseries_id = state
20 self.priority = priority
21 super().__init__(opt_prob)

24 class TargetGoal(StateGoal):
25 def __init__(self, opt_prob, state, priority):
26 self.state = state
27 self.target_min = opt_prob.get_timeseries(state + "_target")
28 self.target_max = self.target_min
29 self.violation_timeseries_id = state + "_target_violation"
30 self.function_value_timeseries_id = state
31 self.priority = priority
32 super().__init__(opt_prob)

These goals are actually really similar. The only difference is that the TargetGoal uses the same timeseries for its
target_max and target_min attributes. This goal will try to minimize the difference between the target and the
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goal’s state. This is in contrast to the RangeGoal, which has a separate min and max that define an acceptable range
of values.

You can read more about the components of goals in the documentation: Multi-objective optimization.

Optimization Problem

We construct the class by declaring it and inheriting the desired parent classes.

35 class Example(
36 HomotopyMixin,
37 GoalProgrammingMixin,
38 CSVMixin,
39 ModelicaMixin,
40 CollocatedIntegratedOptimizationProblem,
41 ):

In our new class, we implement the pre() method. This method is a good place to do some preprocessing of the data
to make sure it is all there when the model runs.

45 def pre(self):
46 super().pre()
47 # Generate handy tuples to iterate over
48 self.channel_node_indices = tuple(range(1, self.channel_n_level_nodes + 1))
49 self.channel_level_nodes = tuple(
50 "{}.H[{}]".format(c, n)
51 for c, n in itertools.product(self.channels, self.channel_node_indices)
52 )
53 # Expand channel water level goals to all nodes
54 for channel in self.channels:
55 channel_max = self.get_timeseries(channel + "_max")
56 channel_min = self.get_timeseries(channel + "_min")
57 for i in self.channel_node_indices:
58 self.set_timeseries("{}.H[{}]_max".format(channel, i), channel_max)
59 self.set_timeseries("{}.H[{}]_min".format(channel, i), channel_min)
60 # Make input series appear in output csv
61 self.set_timeseries("Inflow_Q", self.get_timeseries("Inflow_Q"))
62 self.set_timeseries(
63 "DrinkingWaterExtractionPump_Q_target",
64 self.get_timeseries("DrinkingWaterExtractionPump_Q_target"),
65 )

Next, we instantiate the goals. The highest priority goal in this example will be to keep the water levels within a
desired range. We apply this goal iteratively over all the water level states, and give them a priority of 1. The second
goal is to track a target extraction flow rate with the extraction pump. We give this goal a priority of 2.

67 def path_goals(self):
68 g = super().path_goals()
69

70 # Add RangeGoal on water level states with a priority of 1
71 for node in self.channel_level_nodes:
72 g.append(RangeGoal(self, node, 1))
73

74 # Add TargetGoal on Extraction Pump with a priority of 2
75 g.append(TargetGoal(self, "DrinkingWaterExtractionPump_Q", 2))
76

77 return g
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We want to apply these goals to every timestep, so we use the path_goals() method. This is a method that returns
a list of the path goals we defined above. Note that with path goals, each timestep is implemented as an independent
goal— if we cannot satisfy our min/max on time step A, it will not affect our desire to satisfy the goal at time step B.
Goals that inherit StateGoal are always path goals.

Run the Optimization Problem

To make our script run, at the bottom of our file we just have to call the run_optimization_problem() method
we imported on the optimization problem class we just created.

84 run_optimization_problem(Example)

The Whole Script

All together, the whole example script is as follows:

1 import itertools
2

3 from rtctools.optimization.collocated_integrated_optimization_problem import (
4 CollocatedIntegratedOptimizationProblem
5 )
6 from rtctools.optimization.csv_mixin import CSVMixin
7 from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin,

→˓StateGoal
8 from rtctools.optimization.homotopy_mixin import HomotopyMixin
9 from rtctools.optimization.modelica_mixin import ModelicaMixin

10 from rtctools.util import run_optimization_problem
11

12

13 class RangeGoal(StateGoal):
14 def __init__(self, opt_prob, state, priority):
15 self.state = state
16 self.target_min = opt_prob.get_timeseries(state + "_min")
17 self.target_max = opt_prob.get_timeseries(state + "_max")
18 self.violation_timeseries_id = state + "_target_violation"
19 self.function_value_timeseries_id = state
20 self.priority = priority
21 super().__init__(opt_prob)
22

23

24 class TargetGoal(StateGoal):
25 def __init__(self, opt_prob, state, priority):
26 self.state = state
27 self.target_min = opt_prob.get_timeseries(state + "_target")
28 self.target_max = self.target_min
29 self.violation_timeseries_id = state + "_target_violation"
30 self.function_value_timeseries_id = state
31 self.priority = priority
32 super().__init__(opt_prob)
33

34

35 class Example(
36 HomotopyMixin,
37 GoalProgrammingMixin,

(continues on next page)
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(continued from previous page)

38 CSVMixin,
39 ModelicaMixin,
40 CollocatedIntegratedOptimizationProblem,
41 ):
42 channels = "LowerChannel", "MiddleChannel", "UpperChannel"
43 channel_n_level_nodes = 2
44

45 def pre(self):
46 super().pre()
47 # Generate handy tuples to iterate over
48 self.channel_node_indices = tuple(range(1, self.channel_n_level_nodes + 1))
49 self.channel_level_nodes = tuple(
50 "{}.H[{}]".format(c, n)
51 for c, n in itertools.product(self.channels, self.channel_node_indices)
52 )
53 # Expand channel water level goals to all nodes
54 for channel in self.channels:
55 channel_max = self.get_timeseries(channel + "_max")
56 channel_min = self.get_timeseries(channel + "_min")
57 for i in self.channel_node_indices:
58 self.set_timeseries("{}.H[{}]_max".format(channel, i), channel_max)
59 self.set_timeseries("{}.H[{}]_min".format(channel, i), channel_min)
60 # Make input series appear in output csv
61 self.set_timeseries("Inflow_Q", self.get_timeseries("Inflow_Q"))
62 self.set_timeseries(
63 "DrinkingWaterExtractionPump_Q_target",
64 self.get_timeseries("DrinkingWaterExtractionPump_Q_target"),
65 )
66

67 def path_goals(self):
68 g = super().path_goals()
69

70 # Add RangeGoal on water level states with a priority of 1
71 for node in self.channel_level_nodes:
72 g.append(RangeGoal(self, node, 1))
73

74 # Add TargetGoal on Extraction Pump with a priority of 2
75 g.append(TargetGoal(self, "DrinkingWaterExtractionPump_Q", 2))
76

77 return g
78

79 def post(self):
80 super().post()
81

82

83 # Run
84 run_optimization_problem(Example)

Extracting Results

The results from the run are found in output/timeseries_export.csv. Any CSV-reading software can im-
port it, but this is how results can be plotted using the python library matplotlib:
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1.4.2 Simulation examples

This section provides examples demonstrating key features of RTC-Tools simulation.

Tracking a Setpoint

Overview

The purpose of this example is to understand the technical setup of an RTC- Tools simulation model, how to run the
model, and how to access the results.

The scenario is the following: A reservoir operator is trying to keep the reservoir’s volume close to a given target
volume. They are given a six-day forecast of inflows given in 12-hour increments. To keep things simple, we ignore
the waterlevel-storage relation of the reservoir and head-discharge relationships in this example. To make things
interesting, the reservoir operator is only able to release water at a few discrete flow rates, and only change the discrete
flow rate every 12 hours. They have chosen to use the RTC- Tools simulator to see if a simple proportional controller
will be able to keep the system close enough to the target water volume.

The folder <examples directory>\simulation contains a complete RTC-Tools simulation problem. An
RTC-Tools directory has the following structure:

• input: This folder contains the model input data. These are several files in comma separated value format,
csv.

• model: This folder contains the Modelica model. The Modelica model contains the physics of the RTC-Tools
model.

• output: The folder where the output is saved in the file timeseries_export.csv.

• src: This folder contains a Python file. This file contains the configuration of the model and is used to run the
model .
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The Model

The first step is to develop a physical model of the system. The model can be viewed and edited using the OpenMod-
elica Connection Editor (OMEdit) program. For how to download and start up OMEdit, see Getting OMEdit.

Make sure to load the Deltares library before loading the example:

1. Load the Deltares library into OMEdit

• Using the menu bar: File -> Open Model/Library File(s)

• Select <library directory>\Deltares\package.mo

2. Load the example model into OMEdit

• Using the menu bar: File -> Open Model/Library File(s)

• Select <examples directory\simulation\model\Example.mo

Once loaded, we have an OpenModelica Connection Editor window that looks like this:

The model Example.mo represents a simple system with the following elements:

• a reservoir, modeled as storage element Deltares.ChannelFlow.SimpleRouting.Storage.
Storage,

• an inflow boundary condition Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.
Inflow,

• an outfall boundary condition Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.
Terminal,

• connectors (black lines) connecting the elements.

You can use the mouse-over feature help to identify the predefined models from the Deltares library. You can also
drag the elements around- the connectors will move with the elements. Adding new elements is easy- just drag them
in from the Deltares Library on the sidebar. Connecting the elements is just as easy- click and drag between the ports
on the elements.

In text mode, the Modelica model looks as follows (with annotation statements removed):
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1 model Example
2 // Elements
3 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Inflow inflow(Q = Q_in);
4 Deltares.ChannelFlow.SimpleRouting.Storage.Storage storage(Q_release = P_control,

→˓V(start=storage_V_init, fixed=true, nominal=4e5));
5 Deltares.ChannelFlow.SimpleRouting.BoundaryConditions.Terminal outfall;
6 // Initial States
7 parameter Modelica.SIunits.Volume storage_V_init;
8 // Inputs
9 input Modelica.SIunits.VolumeFlowRate P_control(fixed = true);

10 input Modelica.SIunits.VolumeFlowRate Q_in(fixed = true);
11 input Modelica.SIunits.VolumeFlowRate storage_V_target(fixed = true);
12 // Outputs
13 output Modelica.SIunits.Volume storage_V = storage.V;
14 output Modelica.SIunits.VolumeFlowRate Q_release = P_control;
15 equation
16 connect(inflow.QOut, storage.QIn);
17 connect(storage.QOut, outfall.QIn);
18 end Example;

The three water system elements (storage, inflow, and outfall) appear under the model Example statement. The
equation part connects these three elements with the help of connections. Note that storage extends the partial
model QSISO which contains the connectors QIn and QOut. With QSISO, storage can be connected on two sides.
The storage element also has a variable Q_release, which is the decision variable the operator controls.

OpenModelica Connection Editor will automatically generate the element and connector entries in the text text file.
Defining inputs and outputs requires editing the text file directly and assigning the inputs to the appropriate element
variables. For example, inflow(Q = Q_in) sets the Q variable of the inflow element equal to Q_in.

In addition to elements, the input variables Q_in and P_control are also defined. Q_in is determined by the
forecast and the operator cannot control it, so we set Q_in(fixed = true). The actual values of Q_in are stored
in timeseries_import.csv. P_control is not defined anywhere in the model or inputs- we will dynamically
assign its value every timestep in the python script, \src\example.py.

Because we want to view the water volume in the storage element in the output file, we also define an output
variable storage_V and set it equal to the corresponding state variable storage.V. Dito for Q_release =
P_control.

The Simulation Problem

The python script is created and edited in a text editor. In general, the python script consists of the following blocks:

• Import of packages

• Definition of the simulation problem class

– Any additional configuration (e.g. overriding methods)

• A run statement

Importing Packages

Packages are imported using from ... import ... at the top of the file. In our script, we import the classes we
want the class to inherit, the package run_simulation_problem form the rtctools.util package, and any
extra packages we want to use. For this example, the import block looks like:
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1 import logging
2

3 from rtctools.simulation.csv_mixin import CSVMixin
4 from rtctools.simulation.simulation_problem import SimulationProblem
5 from rtctools.util import run_simulation_problem
6

7 logger = logging.getLogger("rtctools")
8

Simulation Problem

The next step is to define the simulation problem class. We construct the class by declaring the class and inheriting
the desired parent classes. The parent classes each perform different tasks related to importing and exporting data and
running the simulation problem. Each imported class makes a set of methods available to the our simulation class.

10 class Example(CSVMixin, SimulationProblem):

The next, we override any methods where we want to specify non-default behaviour. In our simulation problem,
we want to define a proportional controller. In its simplest form, we load the current values of the volume and
target volume variables, calculate their difference, and set P_control to be as close as possible to eliminating that
difference during the upcoming timestep.

24 def update(self, dt):
25

26 # Get the time step
27 if dt < 0:
28 dt = self.get_time_step()
29

30 # Get relevant model variables
31 volume = self.get_var('storage.V')
32 target = self.get_var('storage_V_target')
33

34 # Calucate error in storage.V
35 error = target - volume
36

37 # Calculate the desired control
38 control = -error / dt
39

40 # Get the closest feasible setting.
41 bounded_control = min(max(control, self.min_release), self.max_release)
42

43 # Set the control variable as the control for the next step of the simulation
44 self.set_var('P_control', bounded_control)
45

46 # Call the super class so that everything else continues as normal
47 super().update(dt)

Run the Simulation Problem

To make our script run, at the bottom of our file we just have to call the run_simulation_problem() method
we imported on the simulation problem class we just created.

51 run_simulation_problem(Example, log_level=logging.DEBUG)
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The Whole Script

All together, the whole example script is as follows:

1 import logging
2

3 from rtctools.simulation.csv_mixin import CSVMixin
4 from rtctools.simulation.simulation_problem import SimulationProblem
5 from rtctools.util import run_simulation_problem
6

7 logger = logging.getLogger("rtctools")
8

9

10 class Example(CSVMixin, SimulationProblem):
11 """
12 A basic example for introducing users to RTC-Tools 2 Simulation
13 """
14

15 def initialize(self):
16 self.set_var('P_control', 0.0)
17 super().initialize()
18

19 # Min and Max flow rate that the storage is capable of releasing
20 min_release, max_release = 0.0, 8.0 # m^3/s
21

22 # Here is an example of overriding the update() method to show how control
23 # can be build into the python script
24 def update(self, dt):
25

26 # Get the time step
27 if dt < 0:
28 dt = self.get_time_step()
29

30 # Get relevant model variables
31 volume = self.get_var('storage.V')
32 target = self.get_var('storage_V_target')
33

34 # Calucate error in storage.V
35 error = target - volume
36

37 # Calculate the desired control
38 control = -error / dt
39

40 # Get the closest feasible setting.
41 bounded_control = min(max(control, self.min_release), self.max_release)
42

43 # Set the control variable as the control for the next step of the simulation
44 self.set_var('P_control', bounded_control)
45

46 # Call the super class so that everything else continues as normal
47 super().update(dt)
48

49

50 # Run
51 run_simulation_problem(Example, log_level=logging.DEBUG)
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Running RTC-Tools

To run this basic example in RTC-Tools, navigate to the basic example src directory in the RTC-Tools shell and run
the example using python example.py. For more details about using RTC-Tools, see Running RTC-Tools.

Extracting Results

The results from the run are found in output\timeseries_export.csv. Any CSV-reading software can im-
port it. Here we used matplotlib to generate this plot.

Observations

This plot shows that the operator is not able to keep the water level within the bounds over the entire time horizon.
They may need to increase the controller timestep, use a more complete PID controller, or use model predictive control
such as the RTC-Tools optimization library to get the results they want.
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